PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The possibility to control the thickness of the oxide layer on the titanium Grade 2 by mechanical activation and heat treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents the results of microstructure, surface development and thickness of the oxide layer on the pure titanium Grade 2 after mechanical activation and heat treatment (550°C/5h). Design/methodology/approach: Studies show that it is possible to control the thickness of the oxide layer by using different materials to change the roughness of surface - mechanical activation before heat treatment. After mechanical activation and heat treatment, the results of the thickness of the oxide layer as well as a level of surface development were obtained, presented and discussed. Findings: The conducted research have proved that mechanical activation of the surface which cause increase of surface development results in greater thickness of oxide layer which is formed during heat treatment. Nevertheless mechanical activation that results in decrease of surface development, such as polishing, results in decrease of oxide layer thickness. Research limitations/implications: The conducted research have showed up that mechanical activation of the surface which cause increase of surface development results in greater thickness of oxide layer which is formed during heat treatment. Nevertheless, mechanical activation that results in decrease of surface development, such as polishing, results in decrease of oxide layer thickness. Practical implications: are possible using similar method for passivation titanium alloys for medical application. Originality/value: The paper presents the possibility of using mechanical preactivation of surface before heat treatment passivation.
Rocznik
Strony
70--77
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
autor
  • Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Al. Armii Krajowej 19, 42-200 Częstochowa, Poland
Bibliografia
  • [1] K. Aniołek, M. Kupka, A. Barylski, Ł. Mieszczak, Characteristic of oxide layers obtained on titanium in the process of thermal oxidation, Archives of Metallurgy and Materials 61/2A (2016) 853-856. DOI: https://doi.org/10.1515/amm-2016-0144
  • [2] M.L. Vera, E. Linardi, L. Lanzani, C. Mendez, C.E. Schevozov, A.E. Ares, Corrosion resistance of titanium dioxide anodic coatings on Ti–6Al–4V, Materials and Corrosion 66/10 (2015) 1140-1149. DOI: https://doi.org/10.1002/maco.201407988
  • [3] M. Ishii, T. Oda, M. Kaneko, Titanium and Its Alloys As Key Materials for Corrosion Protection Engineering, Nippon Steel Technical Report 87 (2003) 49-56.
  • [4] J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, E. Mahe, Structure and composition of passive titanium oxide films, Materials Science and Engineering: B 47/3 (1997) 235-243. DOI: https://doi.org/10.1016/S0921-5107(97)00043-3
  • [5] M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering: A 243/1-2 (1998) 231-236. DOI: https://doi.org/10.1016/S0921-5093(97)00806-X
  • [6] J. Klimas, A. Łukaszewicz, M. Szota, M. Nabiałek, Modification of the structure and properties of the titanium alloy Ti6Al4V in biomedical applications, Archives of Metallurgy and Materials 60/3A (2015) 2013-2018. DOI: https://doi.org/10.1515/amm-2015-0341
  • [7] H. Dong, T. Bell, Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment, Wear 238/2 (2000) 131-137. DOI: https://doi.org/10.1016/S0043-1648(99)00359-2
  • [8] D.S.R. Krishna, Y.L. Brama, Y. Sun, Thick rutile layer on titanium for tribological applications, Tribology International 40/2 (2007) 329-334. DOI: https://doi.org/10.1016/j.triboint.2005.08.004
  • [9] N.D. Tomashov, G.P. Chernova, Yu.S. Ruscol, G.A. Ayuyan, The passivation of alloys on titanium bases, Electrochimica Acta 19/4 (1974) 159-172. DOI: https://doi.org/10.1016/0013-4686(74)85012-7
  • [10] J.L. Ong, C. Lucas, G. Raikar, R. Connatser, J.C. Gregory, Spectroscopic characterization of passivated titanium in a physiologic solution, Journal of Materials Science: Materials in Medicine 6/2 (1995) 113-119. DOI: https://doi.org/10.1007/BF00120418
  • [11] J. Pouilleau, D. Devilliers, H. Groult, P. Marcus, Surface study of a titanium-based ceramic electrode material by X-ray photoelectron spectroscopy,Journal of Materials Science 32 (1997) 5645-5651. DOI: https://doi.org/10.1023/A:1018645112465
  • [12] R.W. Schutz, L.C. Covington, Effect of Oxide Films on the Corrosion Resistance of Titanium, Corrosion 37/10 (1981) 585-591.
  • [13] U. Diebold, The surface science of titanium dioxide, Surface Science Reports 48/5-8 (2003) 53-229. DOI: https://doi.org/10.1016/S0167-5729(02)00100-0
  • [14] J.W. Dewald, A theory and Kinetics of Dormation of Anodic Films at High Fields, Journal of Electrochemical Society 102/1 (1953) 1-6. DOI: https://doi.org/10.1149/1.2429983
  • [15] A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, W. Wolany, Ti6Al4V titanium alloy used as a modern biomimetic material, Archives of Materials Science and Engineering 76/2 (2015) 150-156.
  • [16] L.A. Dobrzański, Applications of newly developed nanostructural and microporous materials in biomedical, tissue and mechanical engineering, Archives of Materials Science and Engineering 76/2 (2015) 53-114.
  • [17] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, M. Szindler, A. Achtelik-Franczak, W. Pakieła, Atomic layer deposition of TiO2 onto porous biomaterials, Archives of Materials Science and Engineering 75/1 (2015) 5-11.
  • [18] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, Comparative analysis of mechanical properties of scaffolds sintered from Ti and Ti6Al4V powders porous biomaterials, Archives of Materials Science and Engineering 73/2 (2015) 69-81.
  • [19] W. Pilarczyk, R. Nowosielski, A. Pilarczyk, The structural study of Ti-Si-C alloys produced by mechanical alloying method, Archives of Materials Science and Engineering 38/2 (2009) 78-84.
  • [20] J. Dutta Majumdar, B.L. Modike, S.K. Roy, I. Manna, High-Temperature Oxidation Behavior of Laser-Surface-Alloyed Ti with Si and Si + Al, Oxidations of Metals 57/5-6 (2002) 473-498. DOI: https://doi.org/10.1023/A:1015300405051
  • [21] A.W. Hansen, L.V.R. Beltrami, L.M. Antonini, D.J. Vlillarhino, J.C.K. das Neves, C.E.B. Marino, C. de F. Malfatti, Oxide Formation on NiTi Surface: Influence of the Heat Treatment Time to Achieve the Shape Memory, Materials Research 18/5 (2015) 1053-1061. DOI: https://doi.org/10.1590/1516-1439.022415
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-678ab7a1-fbac-4f32-bea6-695fa23d3200
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.