PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metoda prognozy produkcji energii wiatrowej z horyzontem jednodniowym oparta na algorytmach sztucznej inteligencji

Autorzy
Identyfikatory
Warianty tytułu
EN
Day-Ahead Wind Power Forecasting Method Based on AI Algorithms
Języki publikacji
PL
Abstrakty
PL
Tematem artykułu jest przedstawienie metodologii predykcji produkcji energii wiatrowej w horyzoncie jednodniowym z wykorzystaniem metod regresji bazujących na algorytmach sztucznej inteligencji: maszyn faktoryzujących, drzew decyzyjnych oraz lasów losowych. Dane SCADA poddane analizie pochodzą z farmy wiatrowej zlokalizowanej w Turcji i zostały wstępnie przetworzone w celu ułatwienia zadania predykcyjnego.
EN
The subject of this paper is the presentation of the forecasting methodology for wind energy production in a one-day time horizon using regression methods based on artificial intelligence algorithms: factoring machines, decision trees and random forests. The analyzed SCADA data comes from a wind farm located in Turkey and has been pre-processed to facilitate the prediction task.
Czasopismo
Rocznik
Tom
Strony
122--132
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • Szkoła Główna Gospodarstwa Wiejskiego
Bibliografia
  • 1. Yang B., Wang, J., Zhangp, X., Yu, T., Yao, W., Shu, H.: “Comprehensive Overview of Meta-Heuristic Algorithm Applications on Pv Cell Parameter Identification”, Energy Conversion and Management, vol. 208, 2020.
  • 2. Vennila C., Tits A., Sudha T.Sri, Sreenivasulu U., Pandu Ranga Reddy N., Jamal K., Lakshmaiah Dayadi, Jagadeesh P., Belay A., “Forecasting Solar Energy Production Using Machine Learning”, International Journal of Photoenergy, vol. 2022, 2022.
  • 3. de Falani, S.Y.A., Gonzalez, M.O.A., Barreto, F.M., de Toledo, J.C., Torkomain, A.L.V.: “Trends in the technological development of wind energy generation”, International Journal of Technology Management & Sustainable Development, vol. 19, no. 1, pp. 43-68(26), 2020.
  • 4. Zhou Wu, Gan Luo, Zhile Yang, Yuanjun Guo, Kang Li, Yusheng Xue: “A comprehensive review on deep learning approaches in wind forecasting applications”, CAAI Transactions on Intelligence Technology, vol 7, issue 2, pp. 129-143, 2022.
  • 5. https://wwindea.org/world-market-for-wind-power-saw-another-record-year-in-2021-973-gigawatt-of-new-capacity-added/
  • 6. Hearps P., McConnell D.: “Renewable energy technology cost review”, Melbourne Energy Institute, p.57, 2011.
  • 7. Kazi, S.: Adaptation of energy production to forecast values using external storage”, Acta Universitatis Sapientiae Electrical and Mechanical Engineering, vol. 3, pp. 51-60, 2011.
  • 8. Martinez, C., et al.: “Predicting wind turbine blade erosion using machine learning”, SMU Data Sci. Rev. 2(2), 17 (2019)
  • 9. Letcher, T.M.: “Wind energy engineering: a handbook for onshore and offshore wind turbines”, Academic Press (2017)
  • 10. Kalmikov, A.: Wind power fundamentals. In: Jain, P. (ed.) Wind Energy Engineering, pp. 17–24. Elsevier (2017)
  • 11. Soman, S.S., et al.: “A review of wind power and wind speed forecasting methods with different time horizons", In: North American Power Symposium 2010, pp. 1–8. IEEE (2010).
  • 12. Shahram Hanifi, Xiaolei Liu, Zi Lin, and Saeid Lotfian: “A critical review of wind power forecasting methods—past, present and future”, energies 13.15 (2020), p. 3764.
  • 13. Claudio Monteiro, Ricardo Bessa, V Miranda, Audun Botterud, Jianhui Wang, G Conzelmann, et al.: “Wind power forecasting: State-of-the-art 2009”, Tech. rep. Argonne National Lab.(ANL), Argonne, IL (United States), 2009.
  • 14. Nielsen T.S., Joensen A., Madsen H., Landberg L., Giebel G.: “A new reference for wind power forecasting”, Wind Energy 1 (1), pp. 29–34, 1998.
  • 15. Al-Yahyai S., Charabi Y., Gastli A.: “Review of the use of Numerical Weather Prediction (NWP) Models for wind energy assessment”, Renewable & Sustainable Energy Reviews, vol. 14, no. 9, pp. 3192- 3198, 2010.
  • 16. Shukur O.B., Lee M.H.: “Daily wind speed forecasting through hybrid kf-ann model based on arima”, Renew. Energy 76, pp. 637–647, 2015.
  • 17. Aghajani A., Kazemzadeh R., Ebrahimi A.: “A novel hybrid approach for predicting wind farm power production based on wavelet transform, hybrid neural networks and imperialist competitive algorithm”, Energy Convers. Manage. 121, pp. 232–240, 2016.
  • 18. Sun W., Wang Y.: “Short-term wind speed forecasting based on fast ensemble empirical mode decomposition, phase space reconstruction, sample entropy and improved back-propagation neural network”, Energy Convers. Manage. 157, pp. 1–12, 2018.
  • 19. Liu H., Mi X., Li Y.: “Comparison of two new intelligent wind speed forecasting approaches based on wavelet packet decomposition, complete ensemble empirical mode decomposition with adaptive noise and artificial neural networks”, Energy Convers. Manage. 155, pp. 188–200, 2018.
  • 20. Li L-L, Zhao X., Tseng M-L, Tan R.R.: “Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm”, Journal of Cleaner Production, vol. 242, 2020.
  • 21. Mingshuai L., Zheming C., Jing Z., Long W., Chao H., Xiong L.: “Short-term wind speed forecasting based on the Jaya-SVM model”, International Journal of Electrical Power & Energy Systems, vol. 121, 2020.
  • 22. Wang H-K, Song K., Cheng Y.: “A hybrid forecasting model based on cnn and informer for short-term wind power”, Frontiers in Energy Research, vol. 9, 2022.
  • 23. Ne Y., Bo H., Zhang W., Zhang H.: “Research on Hybrid Wind Speed Prediction System Based on Artificial Intelligence and Double Prediction Scheme”, Complexity, vol. 2020, 2020
  • 24. Tian Z., Ren Y., Wang G.: “Short-term wind power prediction based on empirical mode decomposition and improved extreme learning machine”, J. Electr. Eng. Technol. 13 (5), pp. 1841–1851, 2018.
  • 25. Zhang C., Wei H., Zhao J., Liu T., Zhu T., Zhang K.: “Short-term wind speed forecasting using empirical mode decomposition and feature selection”, Renew. Energy 96, pp. 727–737, 2016.
  • 26. Huang N. E., Shen Z., Long S. R., Wu M. L. C., Shih H. H., Zhang Q. N., Yen N. C., Tung C. C.: “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proceedings Mathematical Physical & Engineering Sciences, vol. 454, no. 1971, pp. 903- 995, 1998.
  • 27. Du S. C., Liu T., Huang D. L., Li G. L.: “An optimal ensemble empirical mode decomposition method for vibration signal decomposition”, Journal of Vibration & Acoustics, vol. 139, no. 3, 2017.
  • 28. Meng A., Ge J., Yin H., Chen S.: “Wind speed forecasting based on wavelet packet decomposition and artificial neural networks trained by crisscross optimization algorithm”, Energy Convers. Manage. 114, pp. 75–88, 2016.
  • 29. Tian Z., Ren Y., Wang G.: “Short-term wind speed prediction based on improved pso algorithm optimized em-elm”, Energy Sources Part A 41 (1), pp. 26–46, 2019.
  • 30. Hyndman, R.J., Koehler, A.B.: “Another look at measures of forecast accuracy”, International Journal of Forecasting, vol. 22, no. 4, pp. 679-688, 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-678a7fc2-211e-4273-94f4-4e5c4dba0cd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.