PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Refined model of passive branch damper of pressure fluctuations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an analysis of the influence of the kind of a friction model on the dimensioning of a branch pressure fluctuation damper. The mathematical model of the branch damper is defined by determining the damper input impedance and finding its minimum corresponding to the maximum effectiveness in reducing pressure fluctuations. Three kinds of friction for the oscillatory flow in the damper, i.e. a lossless line, steady friction and a nonstationary friction model, are considered. Experimental studies confirmed that the use of the nonstationary friction model in the calculation of branch damper length ensures the highest effectiveness in reducing the amplitude of pressure fluctuations characterized by a given frequency.
Słowa kluczowe
Rocznik
Strony
557--567
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • West Pomeranian University of Technology Szczecin, Faculty of Mechanical Engineering and Mechatronics, Szczecin, Poland
autor
  • Wrocław University of Technology, Faculty of Mechanical Engineering, Wrocław, Poland
Bibliografia
  • 1. Directive 98/37/WE (in Polish)
  • 2. Kollek W., Kudźma Z., 1997, Passive und active Metoden der Druckpulsation und Larminderung Hydrostatischen Systemen, II Deutsch-Polnisches Seminar Innovation und Fortschritt in der Fluidtechnik, Warsaw
  • 3. Kollek W., Kudźma Z., Osiński P., 2001, The use of acoustic holography to locate noise sources in hydrostatic drive systems (in Polish), Problemy Maszyn Roboczych, 17, 93-102
  • 4. Kollek W., Kudźma Z., Stosiak M., 2008, Propagation of vibrations of the bearing elements of a heavy engineering machine (in Polish), Transport Przemysłowy i Maszyny Robocze, 2, 50-53
  • 5. Kollek W., Kudźma Z., Stosiak M., Mackiewicz J., 2007,Possibilities of diagnosing cavitation in hydraulic systems, Archives of Civil and Mechanical Engineering, 7, 1, 61-73
  • 6. Kudźma Z., 2001, Pressure fluctuation damper with retunable natural frequency (in Polish), Czynniki stymulujące rozwój maszyn i systemów hydraulicznych, Konferencja naukowo techniczna, Wrocław-Szklarska Poręba, 3-6.X.2001, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław
  • 7. Kudźma Z., 2006, Passive branch pressure fluctuation damper (in Polish), Hydraulika i Pneumatyka, 6
  • 8. Kudźma Z., 2012, Pressure Fluctuation and Noise Damping in Hydraulic Systems in Transient and Steady States (in Polish), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław
  • 9. Kudźma Z., Kudźma S., 2002, Wave phenomena in proportionally controlled hydrostatic systems (in Polish), Hydraulika i Pneumatyka, 6, 15-17
  • 10. Mikota J., Manhartsgruber B., 2003, Transientresponse dynamics of dynamic vibration absorbers for the attenuation of fluid-flow pulsations in hydraulic systems, International Journal of Fluid Power, 4, 1
  • 11. Ohmi M., Iguchi M., 1980, Flow pattern and frictional losses in pulsating pipe flow. Part 3: General representation of turbulent flow pattern, Bulletin of JSME, December, 23, 186, 2029-2036
  • 12. Ohmi M., Kyonen S., Usui T., 1985, Numerical analysis of transient turbulent flow in a liquid line, Bulletin of JSME, May, 28, 239, 799-806
  • 13. Osiński P., Kollek W., 2013, Assessment of energetistic measuring techniques and their application to diagnosis of acoustic condition of hydraulic machinery and equipment, Archives of Civil and Mechanical Engineering, 13, 3
  • 14. Stosiak M., 2012, The modelling of hydraulic distributor slide-sleeve interaction, Archives of Civil and Mechanical Engineering, 12, 2, 192-197
  • 15. Tijsseling A.S., 1996, Fluid-structure interaction in liquid-filled pipe systems: a review, Journal of Fluids and Structures, 10, 109-146
  • 16. Urbanowicz K., Zarzycki Z., 2012, New efficient approximation of weighting functions for simulations of unsteady friction losses in liquid pipe flow, Journal of Theoretical and Applied Mechanics, 50, 2, 487-508
  • 17. Vardy A.E., Brown J.M.B., 2003, Transient turbulent friction in smooth pipe flows, Journal of Sound and Vibration, 259, 5, 1011-1036
  • 18. Vardy A.E., Brown J.M.B., 2004, Transient turbulent friction in fully rough pipe flows, Journal of Sound and Vibration, 270, 233-257
  • 19. Vardy A.E., Brown J.M.B., 2007, Approximation of turbulent wall shear stress in highly transient pipe flows, Journal of Hydraulic Engineering, ASCE, November, 1219-1228
  • 20. Wacker K., 1985, Schalldampfer auslagen zum Vermindern des Larmes von Hydraulikanlagen, Maschinenmarkt
  • 21. Zarzycki Z., 1994,Resistances of nonstationary motion of liquid in closed conduits (in Polish), Prace Naukowe Politechniki Szczecińskiej, 516
  • 22. Zarzycki Z., Kudźma S., Kudźma Z., Stosiak M., 2007, Simulation of transient flows in hydraulic system with a long liquid line, Journal of Theoretical and Applied Mechanics, 45, 4, 853-871
  • 23. Zielke W., 1968, Frequency-dependent friction in transient pipe flow, Transactions of the ASME, Journal of Basic Engineering, 90, 1, 109-115
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-678651d4-c1d5-4038-8f55-9d00fb3a6aac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.