PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quasi-Static Penetration Properties of Hybrid Composites with Aramid, Carbon and Flax Fibers as Reinforcement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the experimental results of a quasi-static penetration test of laminates on a polyurea-polyurethane matrix, reinforced with aramid, carbon and flax fibers. A total of 15 series of samples with different reinforcement configurations were prepared. A quasi-static penetration test was performed for coefficient: SPR=5. The SPR= Ds/Dp was calculated as the ratio of the support hole diameter (Ds) to the punch diameter (Dp). A punch with a rounded 9-mm diameter tip was used to penetrate the material. Percentage changes of penetration energy (%E) and maximum load (%P) compared to a non-hybrid laminate were calculated in order to estimate the impact of hybridization on the properties of laminates. The energy absorbed during the quasi-static penetration test was used to calculate the PSS (punch shear strength) of the laminates. Damage analysis was performed after the puncture test. It was observed that both the type of reinforcement and the configuration of the reinforcement layers have a potential impact on the obtained results and the laminate damage mechanism.
Twórcy
autor
  • Department of Lightweight Elements Engineering, Foundry and Automation, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
  • Department of Polymer Materials Engineering, Faculty of Materials Engineering, Kazimierz Wielki University, JK Chodkiewicza 30 Street, 85-064 Bydgoszcz, Poland
Bibliografia
  • 1. Korkmaz M., Karakuzu R. Investigation of the effects of hybridization types and temperature on the quasi-static indentation properties of glass/flax hybrid composites for various test speeds. Polymer Composites. 2023; 44: 5272–5283 https://doi.org/10.1002/pc.27490.
  • 2. Wagih A., Maimí P., Blanco N., Costa J. A quasistatic indentation test to elucidate the sequence of damage events in low velocity impacts on composite laminates. Composites Part A: Applied Science and Manufacturing. 2016; 82: 180–189 https://doi.org/10.1016/j.compositesa.2015.11.041.
  • 3. Sutherland L.S., Guedes Soares C. The use of quasi-static testing to obtain the low-velocity impact damage resistance of marine GRP laminates. Compos. Part B Eng. 2012; 43: 1459–1467 https://doi.org/10.1016/j.compositesb.2012.01.002.
  • 4. Doshi S.M., Samuel P.D., Ali M.A., Stack A.J., (Gama) Haque B.Z., Deitzel J.M., Gillespie Jr J.W. Low Velocity Impact Experiments of S-2 Glass-Epoxy Coposites Under Different Environmental Conditions, Conference: Proceedings for the American Society for Composites-Thirty Seventh Technical Conference, September 2022, https://doi.org/10.12783/asc37/36422.
  • 5. Pach, J., Mayer, P., Jamroziak, K., Polak S., Pyka D. Experimental analysis of puncture resistance of aramid laminates on styrene-butadiene-styrene and epoxy resin matrix for ballistic applications. Archiv. Civ.Mech.Eng 2019; 19: 1327–1337 https://doi.org/10.1016/j.acme.2019.07.004.
  • 6. Kłonica M., Kubit A, Perłowski R., Bielawski R., Woś S. Selected methods of modifying the surface layer of a carbon composite, Advances in Science and Technology Research Journal.- 2024; 18: 270–277 https://doi.org/10.12913/22998624/183101.
  • 7. Pach J., Pyka D., Jamroziak K., Mayer P. The experimental and numerical analysis of the ballistic resistance of polymer composites. Compos. Part B Eng. 2017; 113: 24–30 https://doi.org/10.1016/j.compositesb.2017.01.006.
  • 8. Ziółkowski G., Pach J., Pyka D., Kurzynowski T., Jamroziak K. X-Ray computed tomography for the development of ballistic composite. Materials. 2020; 13, 5566 https://doi.org/10.3390/ma13235566.
  • 9. Naveen J., Jawaid M., Zainudin E.S., Sultan M.T.H. and Yahaya R.B. Selection of natural fiber for hybrid kevlar/natural fiber reinforced polymer composites for personal body armor by using analytical hierarchy process. Front. Mater. 2018; 5: 52 https://doi.org/10.3389/fmats.2018.00052.
  • 10. Scheibe M., Bryll K., Brożek P., Czarnecka-Komorowska D., Sosnowski M., Grabian J., Garbacz T. Comparative evaluation of the selected mechanical properties of polymer composites reinforced with glass and hemp fabrics, Advances in Science and Technology Research Journal. 2023; 17: 268–278 https://doi.org/10.12913/22998624/161449.
  • 11. Swolfs Y., Gorbatikh L., Verpoest I. Fibre hybridisation in polymer composites: a review. Composites Part A: Applied Science and Manufacturing, 2014; 67: 181–200 https://doi.org/10.1016/j.compositesa.2014.08.027.
  • 12. Wu W. Tensile failure behaviors and theories of carbon/glass hybrid interlayer and intralayer composites. Coatings. 2023; 13: 774 https://doi.org/10.3390/ coatings13040774
  • 13. Safri S.N.A., Sultan M.T.H., Jawaid M., Jayakrishna K. Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B Eng. 2018; 133: 112–121 https://doi.org/10.1016/j.compositesb.2017.09.008.
  • 14. Bulut M., Erkliğ A., Yeter E. Hybridization effects on quasi-static penetration resistance in fiber reinforced hybrid composite laminates. Compos. Part B Eng. 2016; 98: 9–22 https://doi.org/10.1016/j.compositesb.2016.05.025 15. Pach J., Kuterek E. Investigation of the quasi-static penetration resistance behaviour of carbon/aramid fibre-reinforced PP Laminate, Materials. 2021; 14: 709 https://doi.org/10.3390/ma14040709
  • 16. Pach J., Frączek N., Kaczmar J. The effects of hybridisation of composites consisting of aramid, carbon, and hemp fibres in a quasi-static penetration test. Materials. 2020; 13: 4686 https://doi.org/10.3390/ma13204686.
  • 17. Al-Kinani R., Najim F., de Moura M.F.S.F. The effect of hybridization on the GFRP behavior under quasi-static penetration. Mech. Adv. Mater. Struct. 2014; 21: 81–87 https://doi.org/10.1080/15376494.2012.680672.
  • 18. Miao C., Fernando D., Zhou H., Wilson P., Heitzmann M. Behaviour of hybrid glass fibre-reinforced polymer and timber composite laminates under shear loading: Importance of fibre rotation. Compos. Struct. 2022; 287: 115304 https://doi.org/10.1016/j.compstruct.2022.115304.
  • 19. Andrews Zachariah S., Satish Shenoy B., Jayan J., Pai K.D. Experimental investigation on dynamic and static transverse behaviour ofthin woven Carbon/Aramid hybrid laminates, Journal of King Saud University – Engineering Sciences, https://doi.org/10.1016/j.jksues.2020.09.015.
  • 20. Pincheira G., Canales C., Medina C., Fernández E., i Flores P. Influence of aramid fibers on the mechanical behavior of a hybrid carbon–aramid–reinforced epoxy composite. Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl. 2018; 232: 58–66 https://doi.org/10.1177/1464420715612827.
  • 21. Valença S.L., Griza S., de Oliveira V.G., Sussuchi E.M., de Cunha F.G.C. Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric. Compos. Part B Eng. 2015; 70: 1–8 https://doi.org/10.1016/j.compositesb.2014.09.040.
  • 22. Nagaraja Ganesh B., Rekha B. Intrinsic cellulosic fiber architecture and their effect on the mechanical properties of hybrid composites. Archiv.Civ.Mech. Eng. 2020; 20: 406–417 https://doi.org/10.1007/s43452-020-00125-y.
  • 23. Prince M., Gopinath S., Thanu J., Surya Raj G., Pravin Kumar A. Effect of hybridization, manufacturing methods and factors influencing natural fibers reinforced composites and its commercial applications – A review. Mater. Today Proc. 2022; 62: 2297–2302 https://doi.org/10.1016/j.matpr.2022.04.085.
  • 24. Jaszewski J., Zajchowski S., Tomaszewska J., i Mirowski J. Study on the properties of polyester composites reinforced by glass and natural fibers. Polimery. 2018: 63: 109–114 https://doi.org/10.14314/polimery.2018.2.4.
  • 25. Bandaru K., Vetiyatil L., Ahmad S. The effect of hybridization on the ballistic impact behavior of hybrid composite armors. Compos. Part B. Eng. 2015; 76: 300–319 https://doi.org/10.1016/j.compositesb.2015.03.012.
  • 26. Meliande N.M., Oliveira M.S., Pereira A.C. Balbino F.D’M.P., Figueiredo A.B.-H.da S., Monteiro S.N., Nascimento L.F.C. Ballistic properties of curauaaramid laminated hybrid composites for military helmet. Journal of Materials Research and Technology. 2023; 25: 3943–3956 https://doi.org/10.1016/j.jmrt.2023.06.200.
  • 27. Wambua P., Vangrimde B., Verpoest S.L.I. The response of natural fibre composites to ballistic impact by fragment simulating projectiles. Composite Structures. 2007; 77: 232–240 https://doi.org/10.1016/j.compstruct.2005.07.006.
  • 28. Skoczylas J., Kłonica M, Samborski S. A study on the FRP composite’s matrix damage resistance by means of elastic wave propagation analysis, Composite Structures, 2022; 297: 115935, https://doi.org/10.1016/j.compstruct.2022.115935.
  • 29. Yahaya R., Sapuan S.M., Jawaid M., Leman Z., Zainudin E.S. Quasi-static penetration and ballistic properties of kenaf–aramid hybrid composites. Mater. Des. 2014; 63: 775–782. https://doi.org/10.1016/j.matdes.2014.07.010.
  • 30. Gama B.A., Gillespie Jr. J.W. Punch shear based penetration model of ballistic impact of thicksection composites. Composite Structures. 2008; 86: 356–369. https://doi.org/10.1016/j.compstruct.2007.11.001.
  • 31. Jamroziak, K. Identification of Material Properties in Final Ballistics; Wroclaw University od Technology: Wrocław, Poland, 2013.
  • 32. Barcikowski M., Królikowski W., Lenart S. Microstructures of unsaturated polyester resins modified with reactive liquid rubbers. Polimery. 2017; 62: 650–657. https://doi.org/10.14314/polimery.2017.650.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6785104f-8301-4912-81a9-ee6ca37cd6bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.