PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Attempts to Modify Austenitic Steel with Carbon Nanotubes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, research on influence of multiwalled carbon nanotubes (MWCNTs), produced in Catalic Chemical Carbon Vapor Deposition, NANOCYLTM NC7000CNTs on a structure and properties of AISI 301 steel remelted by TIG arc. In the assessment of influence a type of carbon on properties and structure of austenitic steel, as a carbon filler was use also carburizer. In the specimens (AISI 301 plates) with dimensions 155×60×7 [mm] were drilled holes with 1.3 mm diameter and placed 0.5 mm under specimen surface. Next, to the drilled holes was implemented CNTs, carburizer and mixture of these both powders. Prepared specimens were remelted by TIG method on the CASTOTIG 2200 power source with 2.4 mm tungsten thoriated electrode with parameters sets for obtain 3.0 mm penetration depth. Remelted specimens were cut into the half of the welds distance and prepared for metallographic examinations. Cross sections of the specimens were tested on classical metallography microscopes, hardness tests, SEM analyses (on JEOL 5800 LV SEM EDX equipment) and phase identification by X-ray phase analysis on Philips APD X’Pert PW 3020 diffractometer. Hardness analysis indicates about 25% increase of hardness in the remelted area when the CTNs are used. In the specimens with carburizer there is no significant changes. SEM analyses of remelted areas on AISI 301 specimens modificated with CNTs, indicates that dark areas, initially interpret as one of the phase (based on optical microscope) is finally densely packed bladders with dimensions from 50 nm up to a few µm. These bladders are not present in the specimens with carburizer filler. High resolution scanning microscopy allow to observe in the this area protruding, longitudinal particles with 100-300 nm length. For identification of this phase, X-ray analysis was done. But very small dimensions of used CNTs (diameters about 9,5 nm), random orientation and small weight amount can make difficult or impossible to CNTs detection during XRD tests. It means that it is not possible to clearly determine nature of particles filling the cavities, it is only possible to suppose that they are CNTs beams with nanoparticles comes from their disintegration. Results of the researches indicates, that fill in the weld pool with different form of carbon (CNTs and carburizer) it is possible to achieve remelted beads with different structure and hardness distribution. It confirms validity of the research continuation with CNTs as a modifier of steels and also other metals and theirs alloys.
Twórcy
autor
  • Silesian University of Technology, Mechanical Engineering Faculty, Department of Welding, 18 a Konarskiego Str., 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Mechanical Engineering Faculty, Department of Welding, 18 a Konarskiego Str., 44-100 Gliwice, Poland
autor
  • Cametics Ltd, Nanotechnology, Cambridge, Cambridgeshire, United Kingdom
Bibliografia
  • [1] S. Bakshi at al., Carbon nanotube reinforced metal matrix composites - a review, Int. Mater. Rev. 1 (55), 41-64 (2010).
  • [2] J. Coleman at al., Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites, Carbon 9 (44), 1624-1652 (2006).
  • [3] E. Neubauer at al., Mechanical properties of bulk composites based on aluminum alloy reinforced with CNT with ex-situ TiC layer, Compos. Sci. Technol. 16 (70), 2228-2236 (2010).
  • [4] S. Boncel, J. Górka, S. Milo, P. Shaffer, K. Koziol, Shearinduced crystallisation of molten isotactic polypropylene within the intertube channels of aligned multi-wall carbon nanotube arrays towards structurally, Mater. Lett. (116), 53-56 (2014).
  • [5] P. Barai, G. Weng, A theory of plasticity for carbon nanotube reinforced composites, Int. J. Plasticity (27), 539-559 (2011).
  • [6] H. Tan at al., The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials, Compos. Sci. Technol. 14 (67), 2941-2946 (2007).
  • [7] T. Chmielewski, D. Golański, W. Włosiński, J. Zimmerman, Joining of alumina (Al2O3) with metals by the friction welding method, Bull. Pol. Acad. Sci.-Te. 1 (63), 201-207 (2015).
  • [8] X. Zeng at al., Selective laser melting of high strength Al-Cu-Mg alloys: Processing, microstructure and mechanical properties, Mater. Sci. Eng. 20 (527), 5335-5340 (2010).
  • [9] S. Bakshi, R. Batista, A. Agarwal, Quantification of carbon nanotube distribution and property correlation in nanocomposites, Composites 8 (40), 1311-1318 (2009).
  • [10] A. Lisiecki, Titanium matrix composite Ti/TiN produced by diode laser gas nitriding, Metals 5 (1), 54-69(2015). DOI: https://doi.org/10.3390/met5010054
  • [11] M. Burda, A. Lekawa-Raus, A. Gruszczyk, K. Koziol, Soldering of carbon materials using transition metal rich alloys, ACS Nano 9 (8), 8099-8107 (2015).
  • [12] J. Liao, M. Tan, Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use, Powder Technology 1 (208), 42-48 (2011).
  • [13] Y. Wu, G. Kim, Carbon nanotube reinforced aluminum composite fabricated by semi-solid powder processing, J. Mater. Process. Tech. 8 (211), 1341-1347 (2011).
  • [14] S. Boncel, J. Górka, S. Milo, P. Shaffer, K. Koziol, “Binary salt” of hexane-1,6-diaminium adipate and “carbon nanotubate” as a synthetic precursor of carbon nanotube/Nylon-6,6 hybrid materials, Polym. Composite 3 (35), 523-529 (2014).
  • [15] J. Liao at al., Carbon nanotube evolution in aluminum matrix during composite fabrication process, Mater. Sci. Forum (690), 294-297 (2011).
  • [16] S. Cho S at al., Multiwalled carbon nanotubes as a contributing reinforcement phase for the improvement of thermal conductivity in copper matrix composites, Scripta Mater. 4 (63), 375-378 (2010).
  • [17] A. Kurc-Lisiecka et al., Analysis of deformation texture in AISI 304 steel sheets, Sol. St. Phenomena (203-204), 105-110 (2013).
  • [18] T. Chmielewski, D. Golański, W. Włosiński, Metallization of ceramic materials based on the kinetic energy of detonation waves, Bull. Pol. Acad. Sci.-Te. 2 (63), 449-456 (2015).
  • [19] S. Uddin at al., Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites, Compos. Sci. Technol. 16 (70), 2253-2257 (2010).
  • [20] D. Janicki, Improvement of wear resistance of stainless steel AISI 304L by diode laser surface alloying with chromium carbide, Appl. Mech. Mater. (809-810), 363-368 (2015).
  • [21] K. Kondoh at al., Characteristics of powder metallurgy pure titanium matrix composite reinforced with multi-wall carbon nanotubes, Mater. Sci. Eng. 16-17 (527), 4103-4108 (2010).
  • [22] Q. Li, Ch. Rottmaira, R. Singera, CNT reinforced light metal composites produced by melt stirring and by high pressure die casting, Compos. Sci. Technol. 16 (70), 2242-2247 (2010).
  • [23] M. Musztyfaga-Staszuk, L.A. Dobrzański at al., Application of the finite element method for modelling of the spatial distribution of residual stresses in hybrid surface layers, Arch. Metall. Mater. 59 (1), 247-252 (2014).
  • [24] Y. Xu, G. Ray, B. Abdel-Magid, Thermal behavior of single-walled carbon nanotube polymer-matrix composites, Compos. Part A-Appl. S. 37 (1), 114-121 (2006).
  • [25] D. Chunfeng, Z. Xuexia, W. Dezuna, Chemical stability of carbon nanotubes in the 2024Al matrix, Mater. Lett. 61 (3), 904-907 (2007).
  • [26] Y. Morisada, Y. Miyamoto at al., Microstructures and mechanical properties of Al2O3-C refractories with addition of multi-walled carbon nanotubes, Int. J. Refract. Me. H. (25), 322-327 (2007).
  • [27] K. Lau, D. Hui, The revolutionary creation of new advanced materials-carbon nanotube composites, Compos. Part B 33 (4), 263-277 (2002).
  • [28] G. Heintze, R. McPherson R, Solidification control of submerged arc welds in steels by inoculation with Ti, Weld. J. 65, 71-82 (1986).
  • [29] J. Yao at al., Microstructure and wear property of carbon nanotube carburizing carbon steel by laser surface remelting, Appl. Surf. Sci, 254, 7092-7097 (2008).
  • [30] B. Pearce, H. Kerr, Grain refinement in magnetically stirred GTA welds of aluminum alloys, Metall. Trans. 12B, 479-486 (1981).
  • [31] H. Yunjia et al., Grain refinement of aluminum weld metal, Weld. J. 68, 280-289 (1989).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67848386-e879-4f1e-9c0d-460e499a5bed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.