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APPLICATION OF AN INTERFACE DAMAGE 
MODEL TO STEEL REINFORCED CONCRETE: 
A STUDY OF THE SIZE EFFECT 

Influence of the size of steel reinforcement of a concrete structure on crack 

initiation at the interface between the steel fibre and the concrete body of the 

structure is under consideration. Numerical analysis is provided using a quasi-

static delamination model for interface rupture based on an energetic approach 

using a cohesive zone model for providing the interface stress-strain relation. 

The obtained results confirm expected dependence of the critical load which 

causes triggering of the interface crack on a structure dimension parameter. 

Keywords: interface crack, damage evolution, quasi-static delamination, critical 

load, crack mode 

1. Introduction  

Several experiments confirmed that the size of a fibre placed in a fixed 

volumetric unit of a composite material influences various macroscopic 

properties of such composites. For instance, the tensile strength was found to 

depend on the size of an inclusion in works of Fisher et al. [3] or Cho et al.[2]. 

Such a kind of the size effect was explained by using different cohesive zone 

models (CZM) for describing the interface stress-strain relations by Carpinteri 

et al. [1], or Tavara et al. [9]. Based on such results, the aim of the present work 

is to apply the model developed in [5][10] to a problem which leads to the 
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aforementioned size effect. Additionally, numerical tests also show the 

dependence of the size effect on the transverse loading, as shown by Carpinteri 

et al. [1], or Mantič [6][7], therefore the proposed tests are to demonstrate in 

some sense such influences by introducing various boundary conditions in the 

solved problem. 

The predictions of interface failure are calculated by implementing a quasi-

static rate-independent model of interface rupture which uses a bilinear CZM as 

in [11]. The evolution in time is governed by the total potential energy 

functional E and the functional of energy dissipation R [8][12].  

The evolution model is described in Section Błąd! Nie można odnaleźć 
źródła odwołania., very briefly with underlying energy functionals. The main 

part of the analysis is summarizes in Section Błąd! Nie można odnaleźć źródła 
odwołania., where the size effect is assessed in a particular example of steel 

fibre reinforcement placed in concrete matrix.  

2. A brief description of the interface damage model 

The section briefly reviews the mathematical formulation of the used model 

which is based on energy balance. The total potential energy E is given by the 

mechanical energy stored in the bulk and at the interface as a function of 

displacements u and the internal variable for interface damage ζ, (0≤ζ≤1), 

decreasing from 1 (undamaged state) to 0 (crack initiation and propagation), i.e. 

ζ≤0. The damage evolution is considered rate independent so that the dissipation 

potential R, being a degree one positively homogeneous function of the damage 

rate ζ , is also the dissipation rate. The model consists of linear elastic solids in 

contact along adhesive interfaces whose constitutive law includes both a linear 

elastic and a softening branch. The numerical approach is formulated as 

a recursive time-stepping procedure for finding local minima of the sum of the 

changes of total potential and dissipated energies, one with respect to u and the 

other with respect to ζ. By a special choice of the interface energy functional, the 

interface constitutive relation of the bilinear CZM is obtained in the following 

form, cf. [11]:  

( ) ( ) ( ) c1tttngnnn on0,,, Γ>==+= −+−
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where pn(x) and pt(x), respectively, are the normal and tangential components of 

the interface tractions, δn(x) and δt(x), respectively, are the normal and tangential 

relative displacements between opposite interface points, i.e. δ=u
A
-u

B 

(superscripts A and B refer to the bodies adjacent to the interface from both its 

sides), kn and kt, respectively, denote the normal and tangential stiffnesses of the 

adhesive in the interface. The additional term with
−nδ , denoting the negative 
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part of the relative normal displacement, provides the normal compliance contact 

model with finite interpenetration ( ng >k>k ) at the interface Γc. 

The interface damage (and subsequent crack) evolution is controlled by the 

energy release rate G whose critical value Gd(δ) is the fracture energy being 

defined as fracture-mode sensitive, e.g. according to the Hutchinson-Suo law [4] 
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where the parameters GId and GIId express the fracture energies in the pure Mode 

I and in the pure Mode II, respectively, and +nδ  denotes the positive part of 

the relative normal displacement to exclude a state of compression from damage 

propagation. 

2.2. Energetic formulation of the model  

Let us consider the energies which are taken into account in the model for 

two domains Ω A 
and Ω B

 with boundaries Γ A
 and Γ  B

, respectively. The stored 

energy functional is defined as 
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for the admissible (time τ dependent) displacement u
η
=w

η
(τ) on a part of 

boundary
η
uΓ with η=A, or B. The first two integrals, representing the elastic 

strain energy in the subdomains Ωη
, are expressed in their boundary form. 

The last integral is the interface term which corresponds to the expected 

interface stress-strain relation (1).  

The potential energy of external forces (acting only along a part of the 

boundary denoted
ηΓ p ) is given by the relation 

( ) ,d.d.; BA

BBAA ΓΓτ
ΓΓ  −−=

pp

ufufuF  (4)  

where f
η
(τ) are the prescribed forces on the part of boundary

ηΓ p . The dissipated 

energy is introduced by the (pseudo)potential R which reflects the rate-

independence of the debonding process 
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with fracture energy defined by (2). The relations which govern the evolution of 

damage can be written in form of nonlinear variational inclusions with initial 

conditions 
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where ∂ denotes (partial) subdifferential of a convex non-smooth function, see 

[8], which can be replaced by Gateaux differential if the functional is sufficiently 

smooth, as e.g. F. The initial condition for damage is usually ζ 0=1, pertaining to 

the undamaged state. It should also be noted that the energy release rate G is 

hidden in the second inclusion of (6) as it expresses a change of energy E due to 

a change of damage ζ. 

3. Prediction of the size effect for a steel inclusion 

The size effect for a steel-concrete structure may be caused by changing 

size of the steel inclusion. It can be modelled as a variable-size inclusion 

in a fixed matrix size representing a volumetric unit of the whole structure. 

Of course, also other dimension changes can be applied. The size effect also 

depends on the type and the form of the loading. Therefore, several types of 

boundary constraints will be taken into account. 

In the described model, the damage initiation pertains to the instant when 

ζ<1 and crack initiation to the instant when ζ=0. The difference between these 

two instants determines the cohesive zone in the interface. In order to eliminate 

influence of the cohesive zone in the numerical analysis, the two instants are set 

actually close to each other by appropriate adjusting of the model parameter. 

3.1. Problem definition  

The geometry of the solved problem is shown in Fig. 1, where three choices 

of the applied boundary conditions are depicted, all of them using the dimensions 

a and r. In all cases, compression is considered. It can be guessed that no 

significant difference appears between the cases (A) and (B). The case (C), 

however, corresponds to a biaxial load, in fact compression, therefore the form 

of the size effect may be distinct. The changes of critical loads depending on the 

actual scale of the domain will be done in three modes: 

I. Inclusion changing size. 

II. Matrix changing size. 

III. Inclusion and matrix changing sizes proportionally. 
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The material parameters of the domains are E=210
 
GPa, ν=0.3 for the steel 

inclusion, and E=20
 
GPa, ν=0.2 for the concrete matrix. The interface characteristics 

 

 
Fig. 1. Geometry of the solved problem and three options of boundary conditions 

for the physical model are based on the assumptions that maximal normal tensile 

stress is 
c
np =25

 
MPa, and fracture energy for an opening crack is GId=0.101

 
kJm

-2
, 

the bilinear CZM (1) is considered such that it provides an almost brittle 

interface, which occurs, if the parameter β is large, namely β=100. The model is 

crack mode sensitive if GIId is different from GId, namely GIId=0.690
 
kJm

-2
, so 

that for the choice of the interface stiffnesses in (1) or (2) kn=3.125
 
TPam

-1
, and 

kt = 0.25kn the maximal shearing stress is 
c
tp =32.66

 
MPa.  

The loading f in (4) prescribed by the normal pressure fn is applied in 
increments until total rupture occurs at a part of the interface. The main aim is to 

find the critical value of the load 
c

nf  at which the interface crack is initiated. 

The discretisation has the time step τ=0.01
 
s which causes also the load step 

0.01
 
MPa. The interface is discretised by 128 boundary elements. 

3.2. Results  

We intend to compare the critical magnitudes of the applied load
c

nf  as 

functions of some characteristic dimension of the structure for the three 

introduced in Fig. 1 configurations. Simultaneously we try to explain changes 

in graph curves based on some observations for stresses. Generally, the 

boundary conditions (C) cause biaxial compression so that normal stresses 

cannot initialize damage and the crack appears in Mode II. An effect of the 

boundary conditions (A) and (B) is similar, therefore also the results in these two 

cases are similar for each of the scaling options I, II, and III. Additionally, the 

crack mode can be separated due to the fact that at the places with the maximal 

normal tensile stress the tangential stress vanish or it is close to zero, and at the 

places with the maximal absolute value of the tangential stress the normal stress 
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is compressive not affecting the damage evolution and a crack propagation. 

Therefore, if the ratio ( )
maxnmaxt / +pp  is greater than 

c
tp /

c
np =1.31, a crack 

appears in Mode II, otherwise it is in Mode I. 

The first size changing option shows the dependence of the critical load on 

the radius r of the steel inclusion as shown in Fig. 2, while the concrete matrix size 

is kept fixed at a=150
 
mm. The paragraph above outlined that in the cases (A), 

(B), which behave similarly, there may appear a kink in the dependence of the 

critical load for some inclusion radius due to a change of stress magnitudes (of pn 

and pt) at the interface, while in the compression state of the case (C) no such 

a kink has appeared. Simultaneously, closeness of inclusion and outer matrix 

boundary also affect the results. Therefore, the stresses for the cases (A) and (C) 

are shown in Fig. 3 for a small inclusion and a large inclusion relatively to the matrix.  

 

  

Fig. 2. Critical load for three types of boundary conditions: (A), (B), (C) according to Fig. 1, 

scaling of the inclusion with a=150 mm 

 

 

Fig. 3. Interface stresses for the constraints (A) and (C), a difference between small and big 

inclusions, scaled inclusion, a=150 mm 

The graphs in the case (A) show different ratios between the stresses pn and 

pt so that a change in the character of the curve in Fig. 2 is easily explained: for 

small r maximal normal tensile stress is greater than the tangential one, therefore 

the crack develops in the opening mode, for big r the situation is opposite and 
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the appearing crack is rather in the shearing mode. This is also documented by 

Fig. 4 which shows the arising Mode I crack (clear opening) for a small fibre of 

radius r=2
 
mm and the form of Mode II crack for r=60

 
mm as it is also used in 

Fig. 3 for the case (A).  

 

Fig. 4. Cracks at Mode I and Mode II 

The effect of close contours is the most evident for the case (C) where the 

critical load 
c

nf  has even increased a bit. 

The second option for size changing mode shows the dependence of the 

critical load on the size a of the matrix as shown in Fig. 5. Here, the radius of the 

fibre is kept fixed r=10
 
mm. As before, in the cases (A), (B), there is a kink in 

the graph of the critical load for some matrix dimension caused by the 

observation demonstrated by Fig. 6 that, depending on the size of the matrix, 

either tensile normal or tangential stress is dominant at the instant of damage 

triggering. The graphs demonstrate various ratios between stresses pn and pt so 

that for the constraints (A) it causes different modes of the interface crack for 

various matrix sizes. This is the reason for the change of character of the curve 

in Fig. 5: for small a maximal tangential stress is greater than the tensile normal, 

therefore the tangential stress prevails to control the damage initiation, for big a 

the situation is opposite and the appearing crack is more in the opening mode. 

For the case (C), there is only compression. 

 

   
Fig. 5. Critical load for three types of boundary conditions: (A), (B), (C) according to Fig. 1, 

scaling of the matrix with r=10 mm 
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Fig. 6. Interface stresses for the constraints (A) and (C), a difference between small and large 

matrices, scaled matrix, r=10 mm 

The last size changing mode provided the dependence of the critical load on 

the radius r of the inclusion as shown in Fig. 7. The ratio between structure’s 

dimensions used in the test is a:r=75:4. Again, in the cases (A), (B), there is 

a kink of the graph in the middle of the shown span as, depending on the scale of 

the problem, either tensile normal or tangential stress is dominant at the instant 

of damage triggering, see also in Fig. 8. The figure shows the values of interface 

stresses relatively to the applied load fn at the moment of damage initiation. 

The compressive forces, which are the greatest in fact, do not influence the 

damage process. The graphs reveal various ratios between maximal tensile 

normal and tangential stresses pn and pt, respectively. For the constraints (A) 

shown in Fig. 8, it causes different modes of the interface crack and it is the 

reason for the change of the slope of the curves in Fig. 7(A,B): for small r 

maximal normal tensile stress is greater than tangential, therefore the normal 

stress prevails to control the damage initiation, for big r the situation is opposite 

and the appearing crack is more in the shearing mode. For the constraints (C), 

again only tangential components affect damage triggering. 

 

   

Fig. 7. Critical load for three types of boundary conditions: (A), (B), (C) according to Fig. 1, 

proportional scaling of the whole domain a/r=18.75 
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Fig. 8. Interface stresses for the constraints (A) and (C), a difference between small and big 

inclusions, proportional scaling, a/r=18.75 

4. Conclusion 

The influence of the steel reinforcement radius on crack initiation at the 

interface between the steel fibre and the concrete body of the structure was 

discussed using a numerical approach. The approach used a quasi-static 

delamination model for interface rupture based on an energetic approach with 

a cohesive zone interface. The obtained results confirm that the critical load 

which causes initiation of an interface crack strongly depends on sizes and ratios 

of the structural element dimensions. These geometric characteristics also affect 

the mode of the crack which appears at the interface. Nevertheless, this 

preliminary study provokes many questions about the interface properties or the 

applied load and their role in the discussed size effect: interfaces stiffnesses k, 

fracture energy G, used CZM model and its parameters, type of loading etc. 

A few such parametric studies will be analysed in the next future. 
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