PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Introducing key advantages of intensified flotation cells over conventionally used mechanical and column cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper introduces the key advantages of ImhoflotTM, JamesonTM, and RefluxTM flotation cells over the conventionally used mechanical and column cells from different perspectives. The impact of slurry mean retention time, bubble size distribution, and energy input was studied for all cell types. The mean retention time of laboratory scale ImhoflotTM (V030-cell) and RefluxTM flotation cells (RFC100) were measured experimentally using KCl as a tracer. Also, initially a statistical and practical overview of previously installed ImhoflotTM, and JamesonTM cells was presented in this work. It was found that more industrial data is available for the JamesonTM cell. The diagnostic results showed that RefluxTM, JamesonTM, and ImhoflotTM functionally operate similarly based on providing intensive turbulence in the downcomer. They were initially applied to the Australian and the UK coal industries and installed in the cleaning stage of flotation circuits, while there are now more applications in a wide variety of minerals across the world in different flotation stages. First pilot trials on a Russian gold ore were reported operating both JamesonTM and ImhoflotTM cells at the rougher-scalper and cleaner stages providing superior results using the ImhoflotTM cell as rougher-scalper and the JamesonTM at the cleaner. Formation of sub-micron and micron-sized bubbles, effective hydrodynamic characteristics, and low capital and operating costs were reported as major advantages of intensified flotation cells over the conventionally used ones in improving the recoverability of ultra-fine particles. Literature data showed that these cells provide greater gas-hold-up values (40-60%) over the mechanical (5-20%) and column cells (5-25%) with substantially lower power inputs. It was indicated that low mean slurry retention time could lead to a potential enhancement in their throughputs, but further industrial measurements are required to prove this statement. The RefluxTM cell showed a plug-flow mixing regime, while ImhoflotTM V-Cell followed the trend of perfect mixing and plug-flow dispersion regimes.
Rocznik
Strony
art. no. 155101
Opis fizyczny
Bibliogr. 104 poz., rys., tab., wykr.
Twórcy
  • Department of Geoscience and Petroleum, Faculty of Engineering, Norwegian University of Science and Technology, Andersens veg 15a, 7031 Trondheim, Norway
autor
  • Maelgwyn Mineral Services Ltd, Ty Maelgwyn, 1A Gower Road, Cathays, Cardiff, CF24 4PA, United Kingdom
  • Minerals Processing Division, Mintek, Private Bag X3015, Randburg 2125, South Africa
  • Department of Mining Engineering, Higher Education Complex of Zarand, Zarand 7761156391, Iran
  • Department of Geoscience and Petroleum, Faculty of Engineering, Norwegian University of Science and Technology, Andersens veg 15a, 7031 Trondheim, Norway
  • Maelgwyn Mineral Services Ltd, Ty Maelgwyn, 1A Gower Road, Cathays, Cardiff, CF24 4PA, United Kingdom
autor
  • Sambrook Metallurgy, 20 Friars Road, Barry Island, Vale of Glamorgan, CF62 5TR, United Kingdom
  • Department of Geoscience and Petroleum, Faculty of Engineering, Norwegian University of Science and Technology, Andersens veg 15a, 7031 Trondheim, Norway
Bibliografia
  • AKERSTROM, B., SEPPELT, J., BUBNICH, J., SEAMAN, D., 2018. Cleaner circuit optimization at Cadia operations. 14th AusIMM Mill Operators’ Conference 2018, Brisbane, Qld., 29–31 August.
  • ARAYA, R., CORDINGLEY, G., MWANZA, A., HUYNH, L., 2014. Necessity driving change and improvement to the cleaner circuit at Lumwana copper concentrator. 46th Canadian Mineral Processors Conference, Ottawa, Ontario, 21–23 January, 329–341.
  • ARAYA, R., HUYNH, L., YOUNG, M., ARBURO, K., 2013. Solving challenges in copper cleaning circuits with the Jameson Cell. 10th International Mineral Processing Conference, Santiago, Chile, 15–18 October, 261–271.
  • Araya, R., Lawson, V., 2018. The use of the Jameson cell to improve flotation circuit design. Australia.
  • BARNS, K.E., COLBERT, P.J., MUNRO, P.D., 2009. Designing the optimal flotation circuit – the Prominent Hill case. 10th Mill Operators’ Conference, Adelaide, South Australia, October 12–14, 173–182.
  • BAYNHAM, S., IRELAND, P., and GALVIN, K.P. 2020. Enhancing ion flotation through decoupling the overflow gas and liquid fluxes, Minerals, 10(12), 1–17. https://doi.org/10.3390/min10121134
  • BENNETT, D., CRNKOVIC, I., WALKER, P., 2012. Recent process developments at the Phu Kham copper-gold concentrator. 11th AusIMM Mill Operators’ Conference, Hobart, TAS, 29–31 October, 257–272.
  • BURNS, M.J., COATES, G., BARNARD, L., 1994a. Use of Jameson Cell flotation technology at Cleveland Potash Ltd., North Yorkshire, England. Trans IMM, Section C 103, C162–167.
  • BURNS, M.J., COATES, G., BARNARD, L., 1994b. The use of Jameson Cell flotation technology at Cleveland Potash. International Fertilizer Association (IFA) Technical Conference, Amman, Jordan, October 2–6, 290–300.
  • CARETTA, M.F., GRAHAM, J.N., DAWSON, W.J., 1997. Jameson Cell scale-up experiences at BHP Coal’s Goonyella coal preparation plant, 14th International Coal Preparation Exhibition & Conference, Lexington, Kentucky, 29 April–1 May.
  • CARR, D., HARBORT, G., LAWSON, V., 2003. Expansion of the Mount Isa Mines Copper Concentrator phase one cleaner circuit expansion. 8th Mill Operators’ Conference, AUSIMM, Townsville, Queensland, July 22–23.
  • CHIPAKWE, V., R. JOLSTERÅ, and CHELGANI, S.C., 2021. Nanobubble-assisted flotation of apatite tailings: Insights on beneficiation options, ACS Omega, 6, 13888-13894. DOI: 10.1021/acsomega.1c01551
  • CHU, P., FINCH, J., BOURNIVAL, G., ATA, S., HAMLETT, C. and PUGH, R.J., 2019, A review of bubble break-up. Advances in colloid and interface science. 270, 108-122. https://doi.org/10.1016/j.cis.2019.05.010
  • CINAR, M., SAHBAZ, O., CINAR, F., KELEBEK, S., OTEYAKA, B., 2007. Effect of Jameson cell operating variables and design characteristics on quartz-dodecylamine flotation system, Minerals Engineering, 20(15), 1391-1396. https://doi.org/10.1016/j.mineng.2007.09.002
  • COLE M.J., DICKINSON J.E., GALVIN K.P., 2020. Recovery and cleaning of fine hydrophobic particles using the Reflux™ Flotation Cell, Sep. and Purif. Technol. 240, 116641. Doi: 10.1016/j.seppur.2020.116641.
  • COLE, M. J., GALVIN, K.P., and DICKINSON, J.E. 2021. Maximizing recovery, grade and throughput in a single stage Reflux Flotation Cell, Miner. Eng. 163. 106761. https://doi.org/10.1016/j.mineng.2020.106761
  • CORIN, K.C., MCFADZEAN, B.J., SHACKLETON, N., O’CONNOR, C.T., 2021, Challenges Related to the Processing of Fines in the Recovery of Platinum Group Minerals (PGMs), Minerals 11, 533. https://doi.org/10.3390/min11050533
  • COWBURN, JA., STONE, R., BOURKE S., HILL, B., 2005. Design developments of the Jameson Cell. Centenary of Flotation Symposium, AUSIMM, Brisbane, Australia, June 5–9.
  • CURRY, D., COOPER, M., RUBENSTEIN, J., YOUNG, M., 2010. The right tools in the right place: How Xstrata Nickel Australasia increased Ni throughput at its Cosmos Plant. 42nd Annual Meeting of the Canadian Mineral Processors, Ottawa, Ontario, Canada, January 19–21, 215–234.
  • DEGLON, D.A., EGYA-MENSAH, D., FRANZIDIS, J.P., 2000. Review of hydrodynamics and gas dispersion in flotation cells on South African platinum concentrators, Miner. Eng. 13(3), 235-244. https://doi.org/10.1016/S0892-6875(00)00003-0
  • DICKINSON, J.E., JIANG, K., and GALVIN, K.P., 2015. Fast flotation of coal at low pulp density using the Reflux Flotation Cell, Chem. Eng. Research and Design. 101, 74–81. https://doi.org/10.1016/j.cherd.2015.04.006
  • DRENCKHAN, W., and SAINT-JALMES, A. 2015. The science of foaming. Advances in Colloid and Interface Science, 222, 228-259. https://doi.org/10.1016/j.cis.2015.04.001
  • FAN, M., ZHAO, Y., and TAO, D., 2012. Fundamental studies of nanobubble generation and applications in flotation. Separation Technologies for Minerals, Coal and Earth Resources, 459-469.
  • FARROKHPAY, S., FILIPPOV, L., FORNASIERO, D., 2021. Flotation of Fine Particles: A Review, Miner. Process. and Extract. Metall. Review. 42(7), 473-483. https://doi.org/10.1080/08827508.2020.1793140
  • GAUDIN, A.M., GROH, J.O. and Henderson, H.B., 1931. Effect of particle size on flotation, AIME Technical Publications, 414, 3-23.
  • GONTIJO, C., FORNASIERO, D., RALSTON, J. 2007. The limits of fine and coarse particle flotation, The Canadian Journal of Chemical Engineering, 85, 739-747. https://doi.org/10.1002/cjce.5450850519
  • GRAU, R.A., HEISKANEN, K., 2005. Bubble size distribution in laboratory scale flotation cells, Minerals Engineering, 18(12), 1164-1172. https://doi.org/10.1016/j.mineng.2005.06.011
  • HALL, S., HARRISON, M., 1995. New Jameson Cell flotation of industrial minerals. Industrial Minerals, June, 61–67.
  • HARBORT, G., Pneumatic Flotation, Chapter 7.3. SME Mineral Processing and Extractive Metallurgy Handbook, Society for Mining, Metallurgy, and Exploration (SME), 931-957, 2019.
  • HARBORT, G.J., 2002. Pilot plant Jameson test work at the Mount Isa Copper Concentrator. Mount Isa Mine (MIM) Holdings Limited, Internal Report, Australia.
  • HARBORT, G.J., LAUDER, D., MURPHY, A.S., MIRANDA, J., 2000. Size by size analysis of operating characteristics of Jameson Cell cleaners at the Bajo de Alumbrera Copper/Gold Concentrator. 7th Mill Operators Conference, AUSIMM, Kalgoorlie, WA, October 12–14.
  • HARBORT, G.J., MANLAPIG, E.V., DEBONO, S.K., 2002, Particle collection within the Jameson cell downcomer, Miner. Process. and Extrac. Metall. 111(1), 1-10. https://doi.org/10.1179/mpm.2002.111.1.1
  • HARBORT, G.J., MURPHY, A.S., BUDOD, A., 1997. Jameson Cell developments at Philex Mining Corporation. 6th Mill Operators’ Conference, AUSIMM, Madang, Papua New Guinea, 6–8 October.
  • HASSANZADEH, A., 2017. Measurement and modeling of residence time distribution of overflow ball mill in continuous closed circuit, Geosys. Eng. 20(5), 251-260. https://doi.org/10.1080/12269328.2016.1275824
  • HASSANZADEH, A., AZIZI, A., KOUACHI, S., KARIMI, M., CELIK, M.S., 2019. Estimation of flotation rate constant and particle-bubble interactions considering key hydrodynamic parameters and their interrelations, Miner. Eng., 141, 105836. https://doi.org/10.1016/j.mineng.2019.105836
  • HASSANZADEH, A., FIROUZI, M., ALBIJANIC, B., CELIK, M.S., 2018, A review on determination of particle–bubble encounter using analytical, experimental and numerical methods, Minerals Engineering, 122, 296-311. https://doi.org/10.1016/j.mineng.2018.04.014
  • HASSANZADEH, A., KOUACHI, S., HASANZADEH, M., CELIK, M.S. 2017, A new insight to the role of bubble properties on inertial effect in particle–bubble interaction, Journal of Dispersion Science and Technology, 38(7), 953-960. https://doi.org/10.1080/01932691.2016.1216437
  • HASSANZADEH, A., SAFARI, M., HOANG, D.H., 2021. Fine, coarse and fine-coarse particle flotation in mineral processing with a particular focus on the technological assessments, In Proceedings of the 2nd International Conference on Mineral Science, Online, 1–15 March 2021. https://doi.org/10.3390/iecms2021-09383
  • HASSANZADEH, A., SAFARI, M., HOANG, D.H., KHOSHDAST, H., ALBIJANIC, B., KOWALCZUK, P.B., 2022. Technological assessments on recent developments in fine and coarse particle flotation systems, Miner. Eng., 180, 107509. https://doi.org/10.1016/j.mineng.2022.107509
  • HASSANZADEH, A., VAZIRI HASSAS, B., KOUACHI, S., BRABCOVA, Z., ÇELIK, M.S., 2016. Effect of bubble size and velocity on collision efficiency in chalcopyrite flotation, Colloids. and Colloids. Surf. A Physicochem. Eng. Asp. 498, 258-267. https://doi.org/10.1016/j.colsurfa.2016.03.035
  • HENRÍQUEZ, F., MALDONADO, L., YIANATOS, J., VALLEJOS, P., DÍAZ, F., VINNETT, L., 2022, The Use of Radioactive Tracers to detect and correct feed flowrate imbalances in parallel flotation banks, Journal, 5, 287–297. https://doi.org/10.3390/j5020020
  • HERNANDEZ-AGUILAR, J.R., CUNNINGHAM, R., and FINCH, J.A. 2006. A test of the Tate Eq. to predict bubble size at an orifice in the presence of frother, Inter. J. of Miner. Process. 79(2), 89–97. https://doi.org/10.1016/j.minpro.2005.12.003
  • HOANG, D. H., HEITKAM, S., KUPKA, N., HASSANZADEH, A., PEUKER, U.A., RUDOLPH, M., 2019b, Froth properties and entrainment in lab-scale flotation: A case of carbonaceous sedimentary phosphate ore. Chemical Engineering Research and Design, 142, 100-110. https://doi.org/10.1016/j.cherd.2018.11.036
  • HOANG, D.H., HASSANZADEH, A., PEUKER, U.A., RUDOLPH, M., 2019. Impact of flotation hydrodynamics on the optimization of fine-grained carbonaceous sedimentary apatite ore beneficiation, Powd. Tech. 345, 223-233. https://doi.org/10.1016/j.powtec.2019.01.014
  • HOANG, D.H., IMHOF, R., SAMBROOK, T., BAKULIN, A.E., MURZABEKOV, K.M., ABUBAKIROV, B.A., BAYGUNAKOVA, R.K., RUDOLPH, M., 2022. Recovery of fine gold loss to tailings using advanced reactor pneumatic flotation ImhoflotTM, Miner. Engin. 184, 107649. https://doi.org/10.1016/j.mineng.2022.107649
  • HOSEINIAN, F.S., REZAI, B., KOWSARI, E., SAFARI, M., 2019. Effect of impeller speed on the Ni(II) ion flotation, Geosystem. Eng. 22(3), 161-168. https://doi.org/10.1080/12269328.2018.1520651
  • HUYNH, L., ARAYA, R., SEAMON, D., MUNRO, P., 2014a. Improved cleaner circuit design for better performance using the Jameson Cell. 12th AusIMM Mill Operators’ Conference 2014, Townsville, QLD, 1–3 September.
  • HUYNH, L., KOHLI, I., OSBORNE, D., DE WAAL, H., WALSTRA, C., 2020. Design and performance aspects of coal flotation –experiences with the Jameson cell. Jameson Cell-2020 compendium of Technical Papers, 185–196.
  • HUYNH, L., KOHLI, I., OSBORNE, D.G., 2014b. Busting the myths of flotation in the Australian coal industry. Glencore Technology, Australia.
  • IMHOF, R. US Patent No. 7,108,136 B2, Pneumatic Flotation Separation Device, application filed 19. March 2001; published 19. Sept. 2006.
  • Jameson, G.J., New directions in flotation machine design, 2010. Miner. Eng. 23, 11–13, 835-841. https://doi.org/10.1016/j.mineng.2010.04.001
  • JING, K., DICKINSON, J. E., and GALVIN, K.P. 2014, Maximizing bubble segregation at high liquid fluxes. Advanc. Powd. Techn. 25(4), 1205-1211. https://doi.org/10.1016/j.apt.2014.06.003
  • KENNEDY, D.L., 2008. Redesign of industrial column flotation circuits based on a simple residence time distribution model, MSC Thesis, Mining and Minerals Engineering, Virginia Polytechnic Institute and State University, U.S.A.
  • KHOSHDAST, H., HASSANZADEH, A., KOWALCUK, P.B., FARROKHPAY, S., 2022. Characterization techniques of flotation frothers - A review, Miner. Process. and Extrac. Metall. Review. https://doi.org/10.1080/08827508.2021.2024822
  • KOH, P.T.L., SCHWARZ, M.P., 2003, CFD modelling of bubble–particle collision rates and efficiencies in a flotation cell, Miner. Eng. 16, 1055–1059. https://doi.org/10.1016/j.mineng.2003.05.005
  • KOUACHI, S., VAZIRI HASSAS, B., HASSANZADEH, A., ÇELIK, M.S., BOUHENGUEL, M., 2017. Effect of negative inertial forces on bubble-particle collision via implementation of Schulze collision efficiency in general flotation rate constant Eq., Colloids. Surf. A Physicochem. Eng. Asp. 517, 20, 72-83. https://doi.org/10.1016/j.colsurfa.2017.01.002
  • LAWSON, V., ANDERSON, G., STRONG, T., 2017. Improving concentrate grade through smart design and piloting. 49th Annual Canadian Mineral Processors Operators Conference, Ottawa, Ontario, 17-19 January.
  • LAWSON, V., DEWAAL, H., HEFEREN, G., ASLIN, N., VOIGT, P., HOURN, M., 2018. Mount Isa Mines necessity driving innovation. 50th Annual Canadian Mineral Processors Conference, Ottawa, Ontario, 23–25 January.
  • LI, M., XIANG, Y., CHEN, T., GAO, X., LIU, Q., 2021. Separation of ultra-fine hematite and quartz particles using asynchronous flocculation flotation, Miner. Eng. 164, 106817. https://doi.org/10.1016/j.mineng.2021.106817
  • LIAO, Y., and LUCAS, D., 2009, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chemical Engineering Science, 64, 3389-3406. https://doi.org/10.1016/j.ces.2009.04.026
  • LIMA, P.N., PERES, A.E.C., GONCALVES, T.A.R., 2018, Comparative evaluation between mechanical and pneumatic cells for quartz flotation in the iron ore industry, REM, Int. Eng. J. Ouro Pereto 71(3), 437-442. https://doi.org/10.1590/0370-44672016710179
  • LYNCH, A.J., JOHNSON, N.W., MANLAPIG, E.V., THORNE, C.G., 1981. Mineral and Coal Flotation Circuits – Their Simulation and Control, Developments in Mineral Processing Series, Elsevier Scientific Publishing Company, New York, NY.
  • MAZAHERNASAB, R., AHAMADI, R., RAVANASA, E., 2021, Direct bubble size measurement in a mechanical flotation cell by image analysis and laser diffraction technique - A comparative study, International Journal of Chemical Engineering, 40(5), 1653-1664.
  • MERCURI, F., OSBORNE, D.G., YOUNG, M.F., 2014. The future of thermal coal flotation. 15th Australian Coal Preparation Conference and Exhibition, Broadbeach, Queensland, September.
  • MONDAL, S., ACHARJEE, A., MANDAL, U., SAHA, B., 2021, Froth flotation process and its application, Vietnam Journal of Chemistry, 2021, 59(4), 417-425. DOI: 10.1002/vjch.202100010
  • MOORE, P., Flotation factors, 2021. International Mining Magazine, 36.
  • MORIN, E., LAWSON, V., 2016. Jameson Cell project evaluation in the cleaner circuit at Codelco Andina. 12th International Mineral Processing Conference (Procemin 2016), Santiago, Chile, 26–28 October.
  • NEIMAN, O., HILSCHER, B., SIY, R., 2012. Secondary recovery of bitumen using Jameson downcomers. 44th Annual Canadian Mineral Processors Operators Conference, Ottawa, Ontario, 17-19 January, 115–124.
  • OSBORNE, D., EUSTON, J., 2015. Value of the Jameson Cell to the Australian Economy. Independent Report, MANFORD PTY LTD Coal Technology Consultant, Australia.
  • POKRAJCIC, Z., HARBORT, G.J., LAWSON, L., REEMEYER, L., 2005. Applications of the Jameson Cell at the head of base metal flotation circuits. Centenary of Flotation Symposium, AUSIMM, Brisbane, Australia, June 5–9.
  • POKRAJCIC, Z., HARBORT, G.J., LAWSON, V., REEMEYER, L., 2020, Benefits of high intensity flotation at the head of base metal flotation circuits, Jameson Cell-2020 compendium of Technical Papers, 378-387.
  • PURAL, Y.E., ÇELIK, M., ÖZER, M., BOYLU, F., Effective circulating load ratio in mill circuit for milling capacity and further flotation process-lab scale study, Physicochem. Probl. Miner. Process., 58(5), 2022. 149916. https://doi.org/10.37190/ppmp/149916
  • PYLE, L., TABOSA, E., VIANNA, S., SINCLAIR, S., VALERY, W., 2022, Future (and present) trends in circuit design, IMPC Asia-Pacific 2022, Melbourne 22-24 August, Australia, 1068-1083.
  • RALSTON, J., FORNASIERO, D., GRANO, S., DUAN, J., AKROYD, T., 2007, Reducing uncertainty in mineral flotation—flotation rate constant prediction for particles in an operating plant ore, International Journal of Mineral Processing, 84, 89–98. https://doi.org/10.1016/j.minpro.2006.08.010
  • RAN, J.C., QIU, X.Y., HU, Z., LIU, Q.J., SONG, B.X., YAO, Y.Q., 2019, Effects of particle size on flotation performance in the separation of copper, gold and lead, Powder Technology, 344, 654-664. https://doi.org/10.1016/j.powtec.2018.12.045
  • SAFARI, M., DEGLON, D., 2020a. Evaluation of an attachment–detachment kinetic model for flotation. Minerals 10(11), 1–12. https://doi.org/10.3390/min10110978
  • SAFARI, M., HARRIS, M., DEGLON, D., 2014. The effect of energy input on the flotation kinetics of galena in an oscillating grid flotation cell. In: Proceedings of XXVII International Mineral Processing Congress, Santiago.
  • SAFARI, M., HARRIS, M., DEGLON, D., 2016b. The effect of energy input on the flotation of a platinum ore in a pilot-scale oscillating grid flotation cell. In: Proceedings of XXVIII International Mineral Processing Congress, Quebec, 27–39.
  • SAFARI, M., HARRIS, M., DEGLON, D., 2017. The effect of energy input on the flotation of a platinum ore in a pilot-scale oscillating grid flotation cell, Miner. Eng. 110, 69-74. https://doi.org/10.1016/j.mineng.2017.04.012
  • SAFARI, M., HARRIS, M., DEGLON, D., LEAL FILHO, L., TESTA, F., 2016a. The effect of energy input on flotation kinetics. Inter. J. of Miner. Process. 156, 108-115. https://doi.org/10.1016/j.minpro.2016.05.008
  • SAFARI, M., HOSEINIAN, F.S., DEGLON, D., LEAL FILHO, L.S., SOUZA PINTO, T.C., 2020b. Investigation of the reverse flotation of iron ore in three different flotation cells: Mechanical, oscillating grid and pneumatic, Miner. Eng. 150, 106283. https://doi.org/10.1016/j.mineng.2020.106283
  • SAFARI, M., HOSEINIAN, F.S., DEGLON, D., LEAL FILHO, L.S., SOUZA PINTO, T.C., 2022. Impact of flotation operational parameters on the optimization of fine and coarse Itabirite iron ore beneficiation, Powder Technology 408, 117772. https://doi.org/10.1016/j.powtec.2022.117772
  • SAHBAZ, O., UCAR, A., OTEYAKA, B., 2013. Velocity gradient and maximum floatable particle size in the Jameson cell, Minerals Engineering, 41, 79-85. https://doi.org/10.1016/j.mineng.2012.08.004
  • SAJJAD, M., and OTSUKI, A., Correlation between flotation and rheology of fine particle suspensions, 2022. Metals, 12, 270. https://doi.org/10.3390/met12020270
  • SCHUBERT, H.J., 2008. On the optimization of hydrodynamics in fine particle flotation. Miner. Eng. 21 (12–14), 930–936. https://doi.org/10.1016/j.mineng.2008.02.012
  • SEAMAN, D.R., BURNS, F., ADAMSON, B., SEAMAN, B.A., MANTON, P., 2012. Telfer processing plant upgrade – the implementation of additional cleaning capacity and the regrinding of copper and pyrite concentrates. 11th AusIMM Mill Operators’ Conference, Hobart, TAS, 29–31 October, 373–381.
  • SMITH, T., LIN, D., LACOUTURE, B., ANDERSON, G., 2008. Removal of organic carbon with a Jameson Cell at Red Dog Mine. 40th Annual Meeting of the Canadian Mineral Processors, Ottawa, Ontario, Canada, January 22–24, 333–346.
  • TAYLOR, A., LAWSON, V., BARRETTE, R., 2012. Responding to the challenge – necessity driving circuit change. 11th Mill Operators’ Conference, Hobart, TAS, 29 - 31 October.
  • TESTA, F., SAFARI, M., DEGLON, D., FILHO, L.L., 2017. Influence of agitation intensity on flotation rate of apatite particles, REM – Inter. Eng. J. R. Esc. Minas, 70(4), 491-495. https://doi.org/10.1590/0370-44672017700010
  • TRAHAR, W.J., WARREN, L.J., 1976. The flotability of very fine particles–a review. Int. J. Miner. Process. 3(2), 103–131. https://doi.org/10.1016/0301-7516(76)90029-6
  • UCAR, A., SAHBAZ, O., KERENCILER, S., OTEYAKA, B., 2014. Recycling of colemanite tailings using the Jameson flotation technology, Physicochemical Problems of Mineral Processing, 50(2), 645−655. http://dx.doi.org/10.5277/ppmp140218
  • VAZIRIZADEH, A., BOUCHARD, J., CHEN, Y., 2016. Effect of particles on bubble size distribution and gas hold-up in column flotation, Inter. J. of Miner. Process. 157, 163-173. https://doi.org/10.1016/j.minpro.2016.10.005
  • VINNETT, L., URRIOLA, B., ORELLANA, F., GUAJARDO, C., ESTEBAN, A., 2022, Reducing the presence of clusters in bubble size measurements for gas dispersion characterizations, Minerals, 12, 1148. https://doi.org/10.3390/min12091148
  • VINNETT, L., YIANATOS, J., ALVAREZ, M., 2014, Gas dispersion measurements in mechanical flotation cells: Industrial experience in Chilean concentrators, Minerals Engineering, 57, 12-15. https://doi.org/10.1016/j.mineng.2013.12.006
  • Voigt, P., Hourn, M., Lawson, V., Anderson, G., Mallah, D., 2017. Economic recovery and upgrade of metals from middling and tailing streams. 49th Annual Canadian Mineral Processors Operators Conference, Ottawa, Ontario, 17-19 January.
  • WIBBERLEY, L., 2015. Micronised refined carbons and the direct injection carbon engine. John Sedgman Lecture, Brisbane Novotel, 10 June.
  • YIANATOS, J., BERGH, L., VINNETT, L., PANIRE, I., DÍAZ, F., 2015, Modelling of residence time distribution of liquid and solid in mechanical flotation cells, Minerals Engineering, 78, 69-73. https://doi.org/10.1016/j.mineng.2015.04.011
  • YIANATOS, J., CONTRERAS, F., DÍAZ, F., 2010, GAS holdup and RTD measurement in an industrial flotation cell, Minerals Engineering 23, 125–130. https://doi.org/10.1016/j.mineng.2009.11.003
  • YIANATOS, J., DIAZ, F., RODRIGUEZ, J., 2002, Industrial flotation process modelling: rtd measurement by radioactive tracer technique, IFAC Proceedings, 35(1), 55-60. https://doi.org/10.3182/20020721-6-ES-1901.01160
  • YIANATOS, J., VINNETT, L., PANIRE, I., ALVAREZ-SILVA, M., DIAZ, F., 2017, Residence time distribution measurements and modelling in industrial flotation columns, Minerals Engineering, 110, 139-144. https://doi.org/10.1016/j.mineng.2017.04.018
  • YIN, W., YANG, X., ZHOU, D., LI, Y., LÜ, Z., 2011. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Transactions of Nonferrous Metals Society of China, 21(3), 652-664. https://doi.org/10.1016/S1003-6326(11)60762-0
  • YOU, X., LI, L., LIU, J., WU, L., HE, M., LYN, X., 2017, Investigation of particle collection and flotation kinetics within the Jameson cell downcomer, Powder Technology, 310, 221-227. https://doi.org/10.1016/j.powtec.2017.01.002
  • YOUNG, M.F., BARNES, K.E., ANDERSON, G.S., PEASE, J.D., 2006. Jameson Cell: The “Comeback” in base metals applications using improved design and flow sheets. 38th Annual Meeting of the Canadian Mineral Processors, Ottawa, Ontario, Canada, January 17–19, 311–332.
  • ZAHAB NAZOURI, A., SHOJAEI, V., KHOSHDAST, H., HASSANZADEH, A., 2021. Hybrid CFD-experimental investigation into the effect of sparger orifice size on the metallurgical response of coal in a pilot-scale flotation column, Inter. J. of Coal. Prepa. and Utiliz. https://doi.org/10.1080/19392699.2021.1960318
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-677b9b65-63c7-40cd-b428-6964595c5216
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.