Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Metoda określania grubości rury stosowanej w geotermalnych źródłach energii bazująca pomiarze emisji akustycznej
Języki publikacji
Abstrakty
Currently, geothermal power generation is attracting attention in Japan as the next renewable energy source. However, tapping of this energy requires substantial equipment and entails enormous maintenance costs for this equipment. In particular, in the steel pipes connected to steam wells in geothermal power generation stations, when water vapor is collected from steam wells, the hot spring component known as yunohana (mineral encrustations left by hot springs) precipitates and forms into scale and adheres to the steel pipes. This causes clogging and deterioration of pipes by metal corrosion due to the sulfur content, which requires periodic maintenance and other measures to be taken for most equipment. Consequently, a remaining life assessment technique for maximizing the life of steel pipes connected to geothermal power generation steam wells is required as a continual improvement measure for enabling stable usage of equipment over a long period of time. As a non-destructive test, we used ultrasonic sensors to measure the ultrasonic waves generated from changes in the water flow due to changes in the thickness of the scale adhering to the inside of the pipes and the ultrasonic waves propagated from the change locations of the metal surface, and this enabled us to confirm the buildup of scale using an acoustic emission (AE) sensor for successfully assessing the remaining life.
W artykule omówiono wykorzystanie wód geotermalnych jako odnawialnego źródła energii. Głównym problemem the metody jest zużywanie się stalowych rur doprowadzających pare I gorącą wodę. W artykule opisano wykorzystanie czujników ultradźwiękowych do analizy emisji akustycznej I w ten sposób do badania stanu rurociągu.
Wydawca
Czasopismo
Rocznik
Tom
Strony
133--137
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Faculty of Education, University of Miyazaki, 1-1, Gakuenkibanadai-nishi, Miyazaki, 889192, Japan
autor
- Faculty of Education, University of Miyazaki, 1-1, Gakuenkibanadai-nishi, Miyazaki, 889192, Japan
autor
- National Institute of Technology, Sasebo College, 1-1, Okishinmachi, Sasebo-city, Nagasaki, 8571193, Japan
autor
- Department of Electrical Engineering, Dhonburi Rajabhat University Samut-Prakan, 59/1 Moo 14 Bang Pla, Bang Phi, Samut-Prakan, 10540, Thailand
autor
- Pibulsongkram Rajabhat University, 156 Moo 5, Tambon Phlaichumphon Muang District, Phitsanulok, 65000, Thailand
autor
- Pibulsongkram Rajabhat University, 156 Moo 5, Tambon Phlaichumphon Muang District, Phitsanulok, 65000, Thailand
autor
- King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd, Bang Mot, Thung Khru, Bangkok, 10140, Thailand
Bibliografia
- [1] Butler D., "Radioactivity Spreads in Japan", Nature, 471 (2011), No.7340, 555-556.
- [2] Jeffrey B. K. and Unesaki H., "Japan’s 2014 Strategic Energy Plan: A Planned Energy System Transition", Journal of Energy, 2017 (2017), Article ID 4107614.
- [3] Williamson K.H., Gunderson R.P., Hamblin G. M., Gallup D. L. and Kitz K., Johnson B., Pike G.E., "Geothermal Power Technology", Proceedings of the IEEE, 89 (2001), 1783-1792.
- [4] DiPippo R., Geothermal Power Plants: Evolution and Performance Assessments, Geothermics, 53 (2015), 291-307.
- [5] Ehara S., "Toward the Quantitative Study of Hydrothermal Systems", J. Hot Spring Sci., 60 (2002), 261-271 in Japanese.
- [6] Adachi M. and Noda T., "How to Move forward to New Development of Geothermal Power Plants in Japan ?", J. Geotherm. Res. Soc. Japan, 31 (2009), No.1, 17-26 in Japanese.
- [7] Ricci G. and Viviani G., "Maintenance Operations in Geothermal Power Plants", Geothermics, 2 (2002), No.1, 839-847.
- [8] Nakashima H., "Current Status and Future of the Geothermal Energy", Journal of Smart Processing, 3 (2014), No.2, 108-114 in Japanese.
- [9] Stefánsson V., "Investment Cost for Geothermal Power Plants ", Geothermics, 31 (2002), No. 2, 263-272.
- [10] Haruyama N., Kiyota Y., Bouno T. and Yuji T., "Investigation of Scale Thickness on Measurement Techniques for Geothermal Power Generation Using Iron Pipe", J. IEIE Jpn., 29, (2009), No. 6, 461-462 in Japanese.
- [11] Yuji T., Kiyota Y., Bouno T. and, Toya H., "Estimate of Scale Thickness in Iron Pipes Using Acoustic Emission Sensor", J. IEIE Jpn., 33 (2013), No.2, 146-147 in Japanese.
- [12] Ouali C., Dumouchel P. and Gupta V., "Efficient spectrogram based binary image feature for audio copy detection", in 2015 IEEE International Conf. on Acoustics, Speech and Signal Processing (ICASSP), (2015), 1792-1796.
- [13] Tati S., Kijsanayothin P. and Kongdenfha W., 2018, "Song Clustering Using Similarity of Audio Fingerprint”, TNI Journal of Engineering and Technology, 6 (2018) No 1: January-June, 49-55.
- [14] Glowacz A., "Acoustic Fault Analysis of Three Commutator Motors", Mechanical Systems and Signal Processing, 133 (2019) 106226
- [15] Kuma H., Sugumaran V. and Amarnath M., "Fault diagnosis of bearings through sound Signal Using Statistical Features and Bayes Classifier", J. Vib. Eng. Technol., 4, (2016) N0.2, 87–96
- [16] Delgado-Arredondo P.A., Morinigo-Sotelo D., Osornio-Rios R.A., Avina-Cervantes J.G., Rostro-Gonzalez H. and Romero- Troncoso R.D., "Methodology for Fault Detection in Induction Motors via Sound and Vibration Signals", Mech. Syst. Sig. Process, 83 (2017), 568-589.
- [17] T. Bouno, S. Arimori, T. Yuji and H. Kinoshita, "Development of Fault Diagnosis Classification Method System using Mahalanobis Distance in Micro Wind Turbine", IEEJ Trans. on Power and Energy, 135 (2015), No.9, 577-578 in Japanese.
- [18] Iwasaki A., Todoroki A., Shimamura Y. and Kobayashi H., "Daage Indentification by Discriminant Analysis Using Maharanobis Distance", Trans. of the Japan Society of Mechanical Engineers, Series A, Vol.67, (2001), No.659, 1242- 1247 in Japanese.
- [19] Chung K.-M. and Chen Y.-J., "Effect of High Blockage Ratios on Surface Pressures of an Inclined Flat Plate", Journal of Engineering and Architecture, 4 (2016), No.2, 82-92.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-676e737f-f3be-438f-8eb4-6110cebf75e2