Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This review presents the usage of adhesives and binders for agglomeration of particle materials, including waste, in order to obtain strong bodies. The binding materials were classified into three categories: inorganic binders, organic binders, and compound binders. Many examples of the agglomeration effect of binders in view of their adhesive and thickening reveal that they have a significant impact on the qualities and use of waste lumps. Binders for fine waste granulation, briquetting, and pelletizing were demonstrated in-depth. In all cases, the mechanical strength of the agglomerates produced was increased. It was observed that the majority of the additives may be easily obtained from waste resources, posing a minimal environmental risk.
Wydawca
Rocznik
Tom
Strony
124--135
Opis fizyczny
Bibliogr. 74 poz., fig.
Twórcy
autor
- Mechanical Engineering Department, Tafi la Technical University, P.O. Box 179, Tafila 66110, Jordan
autor
- Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
- Mechanical Engineering Department, Tafi la Technical University, P.O. Box 179, Tafila 66110, Jordan
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA
autor
- Mechanical Engineering Department, Tafi la Technical University, P.O. Box 179, Tafila 66110, Jordan
- Department of Mechanical and Industrial Engineering, Applied Science Private University, P.O. Box 166, 11931, Amman, Jordan
Bibliografia
- 1. Halt, J.A., Kawatra, S.K., Review of organic binders for iron ore concentrate agglomeration. Minerals & Metallurgical Processing 2014; 31(2): 73–94.
- 2. Mangwandi, C., Adams, M.J., Hounslow, M.J., Salman, A.D., Effect of batch size on mechanical properties of granules in high shear granulation. Powder Technology 2011; 206(1–2): 44–52.
- 3. Taulbee, D., Patil, D.P., Honaker, R.Q., Parekh, B.K., Briquetting of coal fines and sawdust. Part I: Binder and briquetting-parameters evaluations. International Journal of Coal Preparation and Utilization 2009; 29(1): 1–22.
- 4. Zhang, G., Sun, Y., Xu, Y., Review of briquette binders and briquetting mechanism. Renewable and sustainable Energy Reviews 2018; 82: 477–487.
- 5. Altun, N.E., Hicyilmaz, C., Kok, M.V., Effect of different binders on the combustion properties of lignite. Part I. Effect on thermal properties. Journal Thermal Analysis and Calorimetry 2001; 65: 787–795.
- 6. Zakari, I.Y., Ismaila, A., Sadiq, U., Nasiru, R., Investigation on the effects of addition of binder and particle size on the high calorific value of solid biofuel briquettes. Journal of Natural Sciences Research 2013; 3(12): 30–34.
- 7. Ramamurthy, K., Harikrishnan, K.I., Influence of binders on properties of sintered fly ash aggregate. Cement and Concrete Composites 2003; 28(1): 33–38.
- 8. Pietsch, W.B., Agglomeration processes: Phenomena, technologies, equipment. John Wiley & Sons 2008, pp. 622.
- 9. Merkus, H.G., Meesters, G.M.H. (Eds.), Production, handling and characterization of particulate materials. Springer Int. Publ. Switzerland 2016, pp. 548.
- 10. Sen, R., Wiwatpanyaporn, S., Annachhatre, A.P., Influence of binders on physical properties of fuel briquettes produced from cassava rhizome waste. International Journal of Environment and Waste Management 2016; 17(2): 158–175.
- 11. Zhao, Y., Chang, H., Ji, D., Liu, Y., The research progress on the briquetting mechanism of fine coal. Journal of Coastal Conservation 2001; 24: 12–14.
- 12. Hycnar, J.J., Borowski, G., Józefiak, T., Conditions for the preparation of stable ferrosilicon dust briquettes. Journal of the Polish Mineral Engineering Society 2014; 33(1): 155–162.
- 13. Borowski G., Alsaqoor S., AlahmerA. Using agglomeration techniques for coal and ash waste management in the circular economy. Advances in Science and Technology Research Journal, 2021; 15(3): 264-276.
- 14. Shanmugam, S., Granulation techniques and technologies: Recent progresses. Bioimpacts 2015; 5(1): 55–63.
- 15. Srivastava, U., Kawatra, S.K., Eisele, T.C., Study of organic and inorganic binders on strength of iron oxide pellets. Metallurgical and Materials Transactions B, 2013; 44(4): 1000–1009.
- 16. Arslan, H., Baykal, G., Utilization of fly ash as engineering pellet aggregates. Environmental Geology 2006, 50(5): 761–770.
- 17. Lakhani, R., Kumar, R., Tomar, P., Utilization of stone waste in the development of value added products: A state of the art review. Journal of Engineering Science and Technology Review 2014; 7(3): 180–187.
- 18. Borowski, G., Hycnar, J.J., The effect of granulated fly ashes with phosphogypsum on the hardening of cement mortar. Technical Transactions – Civil Engineering 2016; 113, 2-B(7): 37–45.
- 19. Boryło,A., Skwarzec, B., Olszewski, G., Nowicki, W., The impact of phosphogypsum landfill on the environment in Wiślinka, Part I (in Polish). Ochrona Powietrza i Problemy Odpadów 2011; 45(2): 70–79.
- 20. Borowski, G., Ozga, M., Comparison of the processing conditions and the properties of granules made from fly ash of lignite and coal. Waste Management 2020; 104C: 192–197.
- 21. Eisele, T.C., Kawatra, S.K., A review of binders in iron ore pelletization. Mineral Processing and Extractive Metallurgy Review 2003; 24(1): 1–90.
- 22. Schmitt, J., A method for improving the process and quality of iron ore pellets made with organic binders. In: Proceedings of 78th Annual Minnesota Section of SME meeting & 66th Annual University of Minnesota Mining Symposium, April 19–20, 2005, Duluth, MN, USA, 2005.
- 23. Wang, R., Jianliang Zhang, J., Liu, Z., Li, Y., Effect of lime addition on the mineral structure and compressive strength of magnesium containing pellets. Powder Technology 2020; 376: 222-228.
- 24. Sivrikaya, O., Arol, A.I., Alternative binders to bentonite for iron ore pelletizing - Part 1: Effects on physical and mechanical properties. Holos 2014; 3: 94-103.
- 25. Bashaiwoldu, A.B., Podczeck, F., Newton, J.M., A study on the effect of drying techniques on the mechanical properties of pellets and compacted pellets. European Journal of Pharmaceutical Sciences, 2004; 21(2–3): 119-129.
- 26. Borowski, G., Stępniewski, W., Wójcik-Oliveira, K., Effect of starch binder for properties of charcoal briquettes. International Agrophysics 2017; 31(4): 571–574.
- 27. Qiu, G., Jiang, T., Huang, Z., Zhu, D., Fan, X., Characterization of preparing cold bonded pellets for direct reduction using an organic binder. ISIJ International 2003; 43(1): 20-25.
- 28. Field, J.R., Stocks, P., Mineral pelletization. Ciba Specialty Chemicals Water Treatments Ltd. 2001, US Patent 6,293,994 B1.
- 29. Schmitt, J.J., Steeghs, H.R.G., Agglomerating particulate materials. Akzo Nobel Inc. 2005, US Patent Application.
- 30. Schmitt, J.J., Smeink, R.G., Process for producing iron ore agglomerates with use of sodium silicate containing binder. Akzo Nobel Inc. 2007, US Patent 2007/0119563 A1.
- 31. Dilsky, S., Blasques, T.C.A., Arias, M.J.A., Bartalini, N.M., Santos, A.T., Da, S.W.C., Cassola, M.S., Binder composition for the agglomeration of fine minerals and pelletizing process using the same. Clariant S.A. Brazil, Clariant International Ltd. 2011, European Patent 2,548,978A1.
- 32. de Moraes, S.L., Kawatra, S.K., Laboratory study of an organic binder for pelletization of a magnetite concentrate. Minerals & Metallurgical Processing 2010; 27(3): 148–153.
- 33. Fernández-González, D., Ruiz-Bustinza, I., Mochón, J., González-Gasca, C., Verdeja, L.F., Iron ore sintering: raw materials and granulation. Mineral Processing and Extractive Metallurgy Review 2017; 38(1): 36–46.
- 34. Borowski, G., Hycnar, J.J., Józefiak, T., Industrial briquetting trials for the waste management of bearing grinding. Annual Set The Environment Protection 2016; 18: 205–217.
- 35. Hedayati, S., Niakousari, M., Microstructure, pasting and textural properties of wheat starch-corn starch citrate composites. Food Hydrocolloids 2018; 81: 1-5.
- 36. Manzhai, V.N., Fufaeva, M.S., Egorova, L.A., Fuel briquettes based on finely dispersed coke particles and polyvinyl alcohol cryo-gels. Solid Fuel Chemistry 2013; 47: 43–46.
- 37. Zhong, H., Cao, Z., A study on carboxylmethyl starch as the binder in coal briquets. Hunan Chemical Industry 2000; 30: 23–25.
- 38. Aransiola, E.F., Oyewusi, T.F., Osunbitan, J.A., Ogunjimi, L.A.O., Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette, Energy Reports 2019; 5: 909-918.
- 39. Igawa, Y., Jimbo, J., Tanaka, H., Kikuchi, S., Harada, T., Tsuchiya, O., Ito, S., Kobayashi, I., Method of producing iron oxide pellets. Kobe Steel Ltd. 2008, US Patent 7,438,730 B2.
- 40. Osmundson, M., Method for producing agglomerated material. Mesabi Nugget LLC. 2011, US Patent 7,955,412 B2.
- 41. Agrawal, B.B., Prasak, K.K., Sarkar, S.B., Ray, H.S., Cold bonded ore-coal composite pellets for sponge ironmaking. Ironmaking & Steelmaking 2001; 27(1): 23–26.
- 42. Zhou, Y., Kawatra, S.K., Pelletization using humic substance-based binder. Mineral Processing and Extractive Metallurgy Review 2017; 38(2): 83-91.
- 43. Sutton, R., Sposito, G., Molecular structure in soil humic substances: the new view. Environmental Science & Technology 2005; 39(23): 9009–9015.
- 44. Piccolo, A., The supramolecular structure of humic substances. Soil Science 2001; 166: 810–832.
- 45. Han, G., Huang, Y., Li, G., Zhang, Y., Jiang, T., Detailed adsorption studies of active humic acid fraction of a new binder on iron ore particles. Mineral Processing and Extractive Metallurgy Review: An International Journal 2014; 35(1): 1–14.
- 46. Faizal, M., Utilization biomass and coal mixture to produce alternative solid fuel for reducing emission of greenhouse gas. International Journal on Advanced Science Engineering Information Technology 2017; 7(3): 950–956.
- 47. Muazu, R.I., Stegemann, J.A., Biosolids and microalgae as alternative binders for bio-mass fuel briquetting. Fuel 2017; 194, 339–347.
- 48. Shao, J., Cheng, W., Zhu, Y., Yang, W., Fan, J., Liu, H., Yang, H., Chen, H., Effects of combined torrefaction and pelletization on particulate matter emission from biomass pellet combustion. Energy Fuels 2019; 33(9): 8777–8785.
- 49. Zhang, X.L., Xu, D.P., The effect of sodium hydroxide treatment on biomass binder preparation. Journal of Chinese Coal Society 2001; 26(1): 105–108.
- 50. Wang, J.C., Wang, J.Q., Study on biologic briquette binder. Applied Energy Technology 2004; 4: 15–16.
- 51. Huang, G.X., Chen, L.J., Cao, J., Briquetting mechanism and waterproof performance of bio-briquette. Journal of China Coal Society 2008; 33: 812–815.
- 52. Hatakeyama, H., Hatakeyama, T., Lignin structure, properties, and applications. Advances in Polymer Science 2010; 232: 1–63.
- 53. Chellan, R., Pocock, J., Arnold, D., Direct reduction of mixed magnetite and coal pellets using induction heating. Mineral Processing and Extractive Metallurgy Review 2004; 26(1): 63–76.
- 54. Karkoska, D., Organic binders for iron ore pelletization. Advanced Sustainable Iron and Steel Making Center Annual Meeting, August 1–3, Houghton, MI, USA, 2011.
- 55. Hebeda, R.E., Syrups. Kirk-Othmer Encyclopedia of Chemical Technology, 2007.
- 56. Sah, R., Dutta, S.K., Effects of binder on the properties of iron ore-coal composite pellets. Mineral Processing and Extractive Metallurgy Review 2010; 31(2): 73–85.
- 57. Tleugabulov, S.M., Stepanov, A.T., Kiekbaev, E.E., Chernyi, N.V., New method of producing pellets from iron-ore concentrate made at the Sokolovsko-Sarbaiskoye mining-concentration combine. Metallurgist 2009; 53(11–12): 657–660.
- 58. Temmerman, M., Rabier, F., Jensen, P.D., Hartmann, H., Böhm, T., Comparative study of durability test methods for pellets and briquettes. Biomass and Bioenergy 2006; 30: 964–972.
- 59. Zhu, S.K., Wu, X.X., Study on coking waste to prepare the binder for briquette coal. Guangzhou Chemical Industry 2011; 39: 106–108.
- 60. Iveson, S.M., Litster, J.D., Hapgood, K., Ennis, B.J., Nucleation, growth and breakage phenomena in agitated wet granulation processes: A review. Powder Technology 2001; 117(1–2): 3–39.
- 61. Steeghs, H.R.G., Schmitt, J.J., Process for agglomerating particulate material. Akzo Nobel N.V. 2002, US Patent 6,497,746 B1.
- 62. Leokaoke, N.T., Bunt, J.R., Neomagus, H.W.J.P., Waanders, F.B., Strydom, C.A., Mthombo, T.S., Manufacturing and testing of briquettes from inertinite-rich low-grade coal fines using various binders. Journal of the Southern African, Institute of Mining and Metallurgy 2018; 118(1): 83–88.
- 63. Jia, M., Zhang, Z., Liu, H., Peng, B., Zhang, H., Lv, W., Zhang, Q., Mao, Z., The synergistic effect of organic montmorillonite and thermoplastic polyurethane on properties of asphalt binder. Construction and Building Materials 2019; 229, art no. 116867: 1-11.
- 64. Zemlyanoi, K.G., Temporary technological binders in industry. Refractories and Industrial Ceramics 2013; 53(5): 283–288.
- 65. Brunerová, A., Roubík, H., Brožek, M., Bamboo fiber and sugarcane skin as a bio-briquette fuel. Energies 2018; 11(9): 2186.
- 66. Zare-Shahabadi, A., Shokuhfar, A., EbrahimiNejad, S., Preparation and rheological characterization of asphalt binders reinforced with layered silicate nanoparticles. Construction and Building Materials 2010; 24: 1239–1244.
- 67. Wang, J.W., Research on compound binder of long flame coal briquette. Journal of Jiangxi Coal Science Technology 2015; 1: 81–83.
- 68. Tong, J.B., Wen, J.T., Lin, Y., Yang, G.Z., Jin, F.X., Liu, D., Study on denatured biomass prepares compound binder of briquette. Journal of Shaanxi University Science Technology 2013; 31: 4–8.
- 69. Wang, L.C., Ma, Y.H., Zhao, J.H., Wang, J.S., Song, C.Y., Research of a new type of binder for coal for gasification with high strength. Journal of Zhengzhou University 2013; 34: 32–35.
- 70. Benk, B.A., Utilisation of the binders prepared from coal tar pitch and phenolic resins for the production metallurgical quality briquettes from coke breeze and the study of their high temperature carbonization behavior. Fuel Processing Technology 2010; 91: 1152–1161.
- 71. Reynolds, G.K., Fu, J.S., Cheong, Y.S., Hounslow M.J., Salman, A.D., Breakage in granulation: A review. Chemical Engineering Science 2005; 60(14): 3969–3992.
- 72. Karthikeyan, M., Zhonghua, W., Mujumdar, A.S., Low-rank coal drying technologies – current status and new developments. Drying Technology An International Journal 2009; 27(3): 403–415.
- 73. Kelbaliyev, G.I., Samedli, V.M., Samedov, M.M., Kasimova, R.K., Experimental study and calculation of the effect of intensifying additives on the strength of superphosphate granules. Russian Journal of Applied Chemistry 2013; 86(10): 1478–1482.
- 74. Ozbas, K.E., Hiçyilmaz, C., Kok, M.V., The effect of lime addition on the combustion properties and sulfur contents of three different coals. Energy Sources 2002; 24(7): 643-652.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6765e1c8-b007-44a5-8ad7-dcfa5827c61f