PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations on the Microstructure and Corrosion Performance of Different WC-Based Cermet Coatings Deposited by High Velocity Oxy Fuel Process onto Magnesium Alloy Substrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the field of surface engineering, thermal spraying is very wide adopted in many branches of the industry. The main reasons of such situation are its flexibility as well as cost effectiveness. Among others, High Velocity Oxy Fuel (HVOF) technique is dedicated for spraying hardmetal and cermet coatings, especially for wear- and corrosion resistance. Such type of coating could be a promising candidate as protective layer for magnesium alloys elements. These materials need a strong improvement in the corrosion protection as well as on the field of wear resistance in order to be widely used in the industry. In this work, different WC-based coatings, namely: (i) WC-Co, (ii) WC-Co-Cr and (iii) WC-Cr3C2-Ni manufactured by HVOF spraying, were investigated. The form of all feedstock materials was agglomerated and sintered powder. All coatings were sprayed with the same technological parameters, especially spray distance which was equal to 400 mm on the AZ91 magnesium alloy substrate. The main aim of the studies was to investigate the influence of the powder material on the corrosion resistance of obtained coatings. The manufactured coatings were examined in terms of its microstructure, using scanning electron microscope (SEM) and corrosion performance, which was assessed in the electrochemical corrosion investigations in 3.5% NaCl solution by Tafel method. The study showed that the corrosion resistance increasing in such order: AZ91 < WC-Cr3C2-Ni < WC-Co < WC-Co-Cr. It should be stressed that WC-Cr3C2-Ni coating exhibits very low corrosion performance, which could be effected by relatively high porosity (c.a. 3 vol.%) and because of that the more complex composition promotes creation of many corrosion cells.
Twórcy
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44100 Gliwice, Poland
  • Department of Metal Forming, Welding and Metrology, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, ul. Łukasiewicza 5, 50371 Wroclaw, Poland
autor
  • Department of Inorganic and Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, ul. Krzywoustego 6B, 44100 Gliwice, Poland
  • School of IT&IS, D. Serikbayev East Kazakhstan Technical University, 69 Protozanov Street, 070004 Ust-Kamenogorsk, Kazakhstan
Bibliografia
  • 1. Friedrich H.E., Mordike B.L., eds. Magnesium technology: metallurgy, design data, applications, Springer, Berlin; New York, 2006.
  • 2. Tan J., Ramakrishna S. Applications of Magnesium and Its Alloys: A Review. Applied Sciences 2021; 11: 6861. https://doi.org/10.3390/app11156861.
  • 3. Furuya H., Kogiso N., Matunaga S., Senda K. Applications of Magnesium Alloys for Aerospace Structure Systems. MSF 2000; 350–351: 341–348. https://doi.org/10.4028/www.scientific.net/MSF.350–351.341.
  • 4. Joost W.J., Krajewski P.E. Towards magnesium alloys for high-volume automotive applications. Scripta Materialia 2017; 128: 107–112. https://doi.org/10.1016/j.scriptamat.2016.07.035.
  • 5. Dziubińska A., Gontarz A., Dziubiński M., Barszcz M. The forming of magnesium alloy forgings for aircraft and automotive applications. Adv. Sci. Technol. Res. J. 2016; 10: 158–168. https://doi.org/10.12913/22998624/64003.
  • 6. Yang Y., Xiong X., Chen J., Peng X., Chen D., Pan F. Research advances in magnesium and magnesium alloys worldwide in 2020. Journal of Magnesium and Alloys 2021; 9: 705–747. https://doi.org/10.1016/j.jma.2021.04.001.
  • 7. Li N., Zheng Y. Novel Magnesium Alloys Developed for Biomedical Application: A Review. Journal of Materials Science & Technology 2013; 29: 489–502. https://doi.org/10.1016/j.jmst.2013.02.005.
  • 8. Iwaszko J., Kudła K. Microstructure, hardness, and wear resistance of AZ91 magnesium alloy produced by friction stir processing with air-cooling. Int J Adv Manuf Technol. 2021; 116: 1309–1323. https://doi.org/10.1007/s00170–021–07474–9.
  • 9. Kondaiah V.V., Pavanteja P., Afzal Khan P., Anannd Kumar S., Dumpala R., Ratna Sunil B. Microstructure, hardness and wear behavior of AZ31 Mg alloy – fly ash composites produced by friction stir processing. Materials Today: Proceedings 2017; 4: 6671–6677. https://doi.org/10.1016/j.matpr.2017.06.441.
  • 10. Song G.L., Atrens A. Corrosion Mechanisms of Magnesium Alloys. Adv. Eng. Mater. 1999; 1: 11–33. https://doi.org/10.1002/(SICI)1527–2648(1999 09)1:1<11::AID-ADEM11>3.0.CO;2-N.
  • 11. Pardo A., Merino M.C., Coy A.E., Viejo F., Arrabal R., Feliú S. Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media. Electrochimica Acta 2008; 53: 7890–7902. https://doi.org/10.1016/j.electacta.2008.06.001.
  • 12. Song G.-L., Xu Z. The surface, microstructure and corrosion of magnesium alloy AZ31 sheet. Electrochimica Acta 2010; 55: 4148–4161. https://doi.org/10.1016/j.electacta.2010.02.068.
  • 13. Zhang L., Yang S., Lv X., Jie X. Wear and Corrosion Resistance of Cold-Sprayed Cu-Based Composite Coatings on Magnesium Substrate. J Therm Spray Tech. 2019; 28: 1212–1224. https://doi.org/10.1007/s11666–019–00887–9.
  • 14. Guo K.W. A Review of Magnesium/Magnesium Alloys Corrosion and its Protection. Recent Pat. Corros. Sci. 2010; 2: 13–21. https://doi.org/10.2174/1877610801002010013.
  • 15. Radha R., Sreekanth D. Insight of magnesium alloys and composites for orthopedic implant applications – a review. Journal of Magnesium and Alloys 2017; 5: 286–312. https://doi.org/10.1016/j.jma.2017.08.003.
  • 16. Luan B.L., Gray J., Yang L.X., Cheong W.J., Shoesmith D. Surface Modification of AZ91 Magnesium Alloy, MSF 2007; 546–549: 513–518. https://doi.org/10.4028/www.scientific.net/MSF.546–549.513.
  • 17. Sivashanmugam N., Harikrishna K.L. Influence of Rare Earth Elements in Magnesium Alloy – A Mini Review. MSF 2020; 979: 162–166. https://doi.org/10.4028/www.scientific.net/MSF.979.162.
  • 18. Calado L.M., Carmezim M.J., Montemor M.F. Rare Earth Based Magnesium Alloys–A Review on WE Series, Front. Mater. 2022; 8: 804906. https://doi.org/10.3389/fmats.2021.804906.
  • 19. Liu D., Yang D., Li X., Hu S. Mechanical properties, corrosion resistance and biocompatibilities of degradable Mg-RE alloys: A review. Journal of Materials Research and Technology 2019; 8: 1538–1549. https://doi.org/10.1016/j.jmrt.2018.08.003.
  • 20. Azzeddine H., Hanna A., Dakhouche A., Rabahi L., Scharnagl N., Dopita M., Brisset F., Helbert A.-L., Baudin T. Impact of rare-earth elements on the corrosion performance of binary magnesium alloys. Journal of Alloys and Compounds 2020; 829: 154569. https://doi.org/10.1016/j.jallcom.2020.154569.
  • 21. Meng J., Sun W., Tian Z., Qiu X., Zhang D. Corrosion performance of magnesium (Mg) alloys containing rare-earth (RE) elements, in: Corrosion Prevention of Magnesium Alloys. Elsevier, 2013; 38–60. https://doi.org/10.1533/9780857098962.1.38.
  • 22. Zhang R.F., Shan D.Y., Han E.H. Two-Step Anodization of AZ91 Magnesium Alloy. MSF 2005; 488–489: 653–656. https://doi.org/10.4028/www. scientific.net/MSF.488–489.653.
  • 23. Singh C., Tiwari S.K., Singh R. Exploring environment friendly nickel electrodeposition on AZ91 magnesium alloy: Effect of prior surface treatments and temperature of the bath on corrosion behaviour. Corrosion Science 2019; 151: 1–19. https://doi.org/10.1016/j.corsci.2019.02.004.
  • 24. Singh C., Tiwari S.K., Singh R. Development of corrosion-resistant electroplating on AZ91 Mg alloy by employing air and water-stable eutectic based ionic liquid bath. Surface and Coatings Technology 2021; 428: 127881. https://doi.org/10.1016/j.surfcoat.2021.127881.
  • 25. Veys-Renaux D., Barchiche C.-E., Rocca E. Corrosion behavior of AZ91 Mg alloy anodized by low-energy micro-arc oxidation: Effect of aluminates and silicates. Surface and Coatings Technology 2014; 251: 232–238. https://doi.org/10.1016/j.surfcoat.2014.04.031.
  • 26. Hoche H., Rosenkranz C., Delp A., Lohrengel M.M., Broszeit E., Berger C. Investigation of the macroscopic and microscopic electrochemical corrosion behaviour of PVD-coated magnesium die cast alloy AZ91. Surface and Coatings Technology 2005; 193: 178–184. https://doi.org/10.1016/j.surfcoat.2004.08.204.
  • 27. Dybowski K., Januszewicz B., Kowalczyk P., Batory D. Hybrid layer type Cr/LPC. Adv. Sci. Technol. Res. J. 2017; 11: 23–27. https://doi.org/10.12913/22998624/67672.
  • 28. Ardelean H., Frateur I., Marcus P. Corrosion protection of magnesium alloys by cerium, zirconium and niobium-based conversion coatings. Corrosion Science 2008; 50: 1907–1918. https://doi.org/10.1016/j.corsci.2008.03.015.
  • 29. Wang Q., Spencer K., Birbilis N., Zhang M.-X. The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate. Surface and Coatings Technology 2010; 205: 50–56. https://doi.org/10.1016/j.surfcoat.2010.06.008.
  • 30. Catar R., Altun H. Improvement of corrosion and stress corrosion properties of magnesium alloys by coating aluminum with the electric arc spray method. Materials & Corrosion 2022; 73: 1766–1775. https://doi.org/10.1002/maco.202213156.
  • 31. Majewski D., Hejwowski T., Łukasik D. The Influence of Microstructure of Arc Sprayed Coatings on Wear Resistance. Adv. Sci. Technol. Res. J. 2018; 12: 285–292. https://doi.org/10.12913/22998624/86210.
  • 32. Kumar S., Kumar A., Kumar D., Jain J. Thermally sprayed alumina and ceria-doped-alumina coatings on AZ91 Mg alloy, Surface and Coatings Technology 2017; 332: 533–541. https://doi.org/10.1016/j.surfcoat.2017.05.096.
  • 33. Gao P.H., Li J.P., Yang Z., Guo Y.C., Wang Y.R. Corrosion Resistance of Al-12Si Coatings on AZ91Magnesium Alloy Prepared through Flame Spray. MSF 2013; 765: 639–643. https://doi.org/10.4028/www.scientific.net/MSF.765.639.
  • 34. Kubatík T.F., Pala Z., Neufuss K., Vilémová M., Mušálek R., Stoulil J., Slepička P., Chráska T. Metallurgical bond between magnesium AZ91 alloy and aluminium plasma sprayed coatings. Surface and Coatings Technology 2015; 282: 163–170. https://doi.org/10.1016/j.surfcoat.2015.10.032.
  • 35. Pashechko M., Kindrachuk M., Gumeniuk I., Tisov O., Zahrebelniy V. Functional Plasma-Deposited Coatings. Adv. Sci. Technol. Res. J. 2017; 11: 301–304. https://doi.org/10.12913/22998624/80996.
  • 36. Jonda E., Łatka L., Tomiczek A., Godzierz M., Pakieła W., Nuckowski P. Microstructure Investigation of WC-Based Coatings Prepared by HVOF onto AZ31 Substrate. Materials 2021; 15: 40. https://doi.org/10.3390/ma15010040.
  • 37. Jonda E., Łatka L. Comparative Analysis of Mechanical Properties of WC-based Cermet Coatings Sprayed by HVOF onto AZ31 Magnesium Alloy Substrates. Adv. Sci. Technol. Res. J. 2021; 15: 57–64. https://doi.org/10.12913/22998624/135979.
  • 38. Morelli S., Rombolà G., Bolelli G., Lopresti M., Puddu P., Boccaleri E., Seralessandri L., Palin L., Testa V., Milanesio M., Lusvarghi L. Hard ultralight systems by thermal spray deposition of WC-CoCr onto AZ31 magnesium alloy. Surface and Coatings Technology 2022; 451: 129056. https://doi.org/10.1016/j.surfcoat.2022.129056.
  • 39. Lyphout C., Sato K., Houdkova S., Smazalova E., Lusvarghi L., Bolelli G., Sassatelli P. Tribological Properties of Hard Metal Coatings Sprayed by High-Velocity Air Fuel Process. J Therm Spray Tech. 2016; 25: 331–345. https://doi.org/10.1007/s11666–015–0285–4.
  • 40. Wood R.J.K., Herd S., Thakare M.R. A critical review of the tribocorrosion of cemented and thermal sprayed tungsten carbide. Tribology International 2018; 119: 491–509. https://doi.org/10.1016/j.triboint.2017.10.006.
  • 41. Ahmed R., Vourlias G., Algoburi A., Vogiatzis C., Chaliampalias D., Skolianos S., Berger L.-M., Paul S., Faisal N.H., Toma F.-L., Al-Anazi N.M., Goosen M.F.A. Comparative Study of Corrosion Performance of HVOF-Sprayed Coatings Produced Using Conventional and Suspension WC-Co Feedstock. J Therm Spray Tech. 2018; 27: 1579–1593. https://doi.org/10.1007/s11666–018–0775–2.
  • 42. Souza V.A.D., Ne A. Linking electrochemical corrosion behaviour and corrosion mechanisms of thermal spray cermet coatings (WCÁ/CrNi and WC/ CrCÁ/CoCr). Materials Science and Engineering A. 2003.
  • 43. Bolelli G., Giovanardi R., Lusvarghi L., Manfredini T. Corrosion resistance of HVOF-sprayed coatings for hard chrome replacement. Corrosion Science 2006; 48: 3375–3397. https://doi.org/10.1016/j.corsci.2006.03.001.
  • 44. Taltavull C., Lopez A.J., Torres B., Atrens A., Rams J. Optimisation of the high velocity oxygen fuel (HVOF) parameters to produce effective corrosion control coatings on AZ91 magnesium alloy: Optimisation of the high velocity oxygen fuel (HVOF) parameters. Materials and Corrosion 2015; 66423–66433. https://doi.org/10.1002/maco.201407982.
  • 45. García-Rodríguez S., López A.J., Torres B., Rams J. 316L stainless steel coatings on ZE41 magnesium alloy using HVOF thermal spray for corrosion protection. Surface and Coatings Technology 2016; 287: 9–19. https://doi.org/10.1016/j.surfcoat.2015.12.075.
  • 46. Parco M., Zhao L., Zwick J., Bobzin K., Lugscheider E. Investigation of HVOF spraying on magnesium alloys. Surface and Coatings Technology 2006; 201: 3269–3274. https://doi.org/10.1016/j.surfcoat.2006.06.047.
  • 47. Buchtík M., Másilko J., Vyklický O., Filipenský J., Wasserbauer J., Ptáček P. Microstructural characterization and wear behavior of WC-CoCr coating on AZ91 magnesium alloy 2019; 922–927. https://doi.org/10.37904/metal.2019.730.
  • 48. Jonda E., Szala M., Sroka M., Łatka L., Walczak M. Investigations of cavitation erosion and wear resistance of cermet coatings manufactured by HVOF spraying. Applied Surface Science 2023; 608: 155071. https://doi.org/10.1016/j.apsusc.2022.155071.
  • 49. Łatka L., Pawłowski L., Winnicki M., Sokołowski P., Małachowska A., Kozerski S. Review of Functionally Graded Thermal Sprayed Coatings. Applied Sciences 2020; 10: 5153. https://doi.org/10.3390/app10155153.
  • 50. Agüero A., Camón F., García de Blas J., del Hoyo J.C., Muelas R., Santaballa A., Ulargui S., Vallés P. HVOF-Deposited WCCoCr as Replacement for Hard Cr in Landing Gear Actuators. J Therm Spray Tech. 2011; 20: 1292–1309. https://doi.org/10.1007/s11666–011–9686–1.
  • 51. Ding X., Ke D., Yuan C., Ding Z., Cheng X. Microstructure and Cavitation Erosion Resistance of HVOF Deposited WC-Co Coatings with Different Sized WC, Coatings. 2018; 8: 307. https://doi.org/10.3390/coatings8090307.
  • 52. Şerban V.A., Uţu I.D., Mărginean G. Substrate influence on the properties of thermally sprayed WC–CrC–Ni cermet coatings, J. Optoelectron. Adv. Mater. 2015; 17: 1425–1430.
  • 53. Wang H., Qiu Q., Gee M., Hou C., Liu X., Song X. Wear resistance enhancement of HVOF-sprayed WC-Co coating by complete densification of starting powder. Materials & Design 2020; 191: 108586. https://doi.org/10.1016/j.matdes.2020.108586.
  • 54. Song B., Murray J.W., Wellman R.G., Pala Z., Hussain T. Dry sliding wear behaviour of HVOF thermal sprayed WC-Co-Cr and WC-CrxCy-Ni coatings. Wear 2020; 442–443: 203114. https://doi.org/10.1016/j.wear.2019.203114.
  • 55. Hong S., Wu Y.P., Gao W.W., Wang B., Guo W.M., Lin J.R. Microstructural characterisation and microhardness distribution of HVOF sprayed WC–10Co–4Cr coating. Surface Engineering 2014; 30: 53–58. https://doi.org/10.1179/1743294413Y.0000000184.
  • 56. Zhang H., Chen X., Gong Y., Tian Y., McDonald A., Li H. In-situ SEM observations of ultrasonic cavitation erosion behavior of HVOF-sprayed coatings. Ultrasonics Sonochemistry 2020; 60: 104760. https://doi.org/10.1016/j.ultsonch.2019.104760.
  • 57. Yao H.-L., Yang C., Yi D.-L., Zhang M.-X., Wang H.-T., Chen Q.-Y., Bai X.-B., Ji G.-C. Microstructure and mechanical property of high velocity oxyfuel sprayed WC-Cr3C2-Ni coatings. Surface and Coatings Technology 2020; 397: 126010. https://doi.org/10.1016/j.surfcoat.2020.126010.
  • 58. Murugan K., Ragupathy A., Balasubramanian V., Sridhar K. Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC–10Co–4Cr coatings. Surface and Coatings Technology 2014; 24790–102. https://doi.org/10.1016/j.surfcoat.2014.03.022.
  • 59. Zhang S.-H., Cho T.-Y., Yoon J.-H., Li M.-X., Shum P.W., Kwon S.-C. Investigation on microstructure, surface properties and anti-wear performance of HVOF sprayed WC–CrC–Ni coatings modified by laser heat treatment. Materials Science and Engineering: B. 2009; 162: 127–134. https://doi.org/10.1016/j.mseb.2009.03.017.
  • 60. Al Bacha S., Aubert I., Zakhour M., Nakhl M., Bobet J.L. Valorization of AZ91 by the hydrolysis reaction for hydrogen production (Electrochemical approach). Journal of Magnesium and Alloys 2021; 9: 1942–1953. https://doi.org/10.1016/j.jma.2020.12.007.
  • 61. Zhang Y., Shen X. Facile fabrication of robust superhydrophobic coating for enhanced corrosion protection on AZ91 magnesium alloy by electroless Ni-B/GO plating. Surface and Coatings Technology 2023; 455: 129213. https://doi.org/10.1016/j.surfcoat.2022.129213.
  • 62. Walczak M., Szala M., Okuniewski W. Assessment of Corrosion Resistance and Hardness of Shot Peened X5CrNi18–10 Steel. Materials 2022; 15: 9000. https://doi.org/10.3390/ma15249000.
  • 63. Wu P., Zhang Z., Xu F., Deng K., Nie K., Gao R. Effect of duty cycle on preparation and corrosion behavior of electrodeposited calcium phosphate coatings on AZ91. Applied Surface Science 2017; 426: 418–426. https://doi.org/10.1016/j.apsusc.2017.07.111.
  • 64. Wang B., Liu X., Wang Y., Ding J., Wei S., Xia X., Liu M., Xu B. Microstructure and anti-corrosion properties of supersonic plasma sprayed Al-coating with Nano-Ti polymer sealing on AZ91-Magnesium alloy. Journal of Materials Research and Technology 2022; 21: 2730–2742. https://doi.org/10.1016/j.jmrt.2022.10.086.
  • 65. Calderon S., Alves C.F.A., Manninen N.K., Cavaleiro A., Carvalho S. Electrochemical Corrosion of Nano-Structured Magnetron-Sputtered Coatings. Coatings 2019; 9: 682. https://doi.org/10.3390/coatings9100682.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6751e2e2-9903-4210-8a6c-b14777475730
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.