PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rejection of harmonic and transient disturbances of a smart structure with piezoelectric actuators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Light flexible structures are easily prone to vibrate due to external forces or due to forces generated in the inner structure. This situation is common in machinery or mechanical structures with rotational devices. The unwanted vi-bration of such structures can be compensated with the addition of piezoelectric actuators for active vibration control (AVC). The rejection of harmonic disturbances is frequently done with controllers based on the internal model principle. The goal of this research is to reduce the effect of harmonic disturbances with known (measured) time-varying fre¬quencies acting on a system as well as to increase the damping of the system for the transient response (first mode of vibration). The experimental setup is made up of a slender aluminium flexible beam, a pair of piezoelectric actuators, an accelerometer and two DC motors, as well as the data acquisition and signal conditioning equipment. The harmonic disturbance is generated by DC motors. The control design utilizes an augmented description of the plant. The plant including the disturbance is modelled as a polytopic linear parameter-varying (pLPV) system. An observer-based gain-scheduling controller is calculated based on quadratic stability and the stability is guaranteed for the specified range ofvariation of the scheduling parameters, also restriction in the performance is introduced in the sense of the H2-norm. Experimental results show very good disturbance cancellation.
PL
Lekkie konstrukcje są podatne na drgania wzbudzane przez wymuszenia zewnętrzne oraz siły występujące wewnątrz układu. Drgania tego typu konstrukcji mogą być zredukowane przy zastosowaniu aktuatorów piezoelektrycznych i układów aktywnej regulacji. Układy eliminacji drgań często wykorzystują regulatory zaprojektowane przy wykorzysta¬niu modelu obiektu. Celem obecnych badań była redukcja wpływu harmonicznie zmiennych parametrów układu oraz zwiększenie tłumienia drgań nieustalonych. Obiekt sterowania został zamodelow any jako liniowy układ niestacjonarny. Układ regulacji uwzględniający obserwator stanu został zaprojektowany przy wykorzystaniu normy H2. Przeprowadzono weryfikację doświadczalną zaproponowanej metody. W skład stanowiska doświadczalnego wchodziły: podatna bel¬ka wykonana z aluminium, para aktuatorów piezoelektrycznych, akcelerometr, dwa silniki prądu stałego oraz układ akwizycji danych i ich kondycjonowania. Zaburzenie harmoniczne było generowane przez silniki prądu stałego. Wyniki badań doświadczalnych potwierdziły dużą skuteczność zaproponowanej metody redukcji drgań.
Rocznik
Strony
41--51
Opis fizyczny
Bibliogr. 30 poz., rys., wykr., tab.
Twórcy
autor
  • Institute of Electrical Information Technology, Clausthal University of Technology, Leibnizstr. 28,38678 Clausthal-Zellerfeld, Germany
  • Institute of Electrical Information Technology, Clausthal University of Technology, Leibnizstr. 28,38678 Clausthal-Zellerfeld, Germany
autor
  • Institute of Electrical Information Technology, Clausthal University of Technology, Leibnizstr. 28,38678 Clausthal-Zellerfeld, Germany
autor
  • Institute of Electrical Information Technology, Clausthal University of Technology, Leibnizstr. 28,38678 Clausthal-Zellerfeld, Germany
Bibliografia
  • 1. Amato F. 2006, Robust control of linear systems subject to uncertain time--varying parameters, Springer, Berlin.
  • 2. Apkarian P., Gahinet P., Becker G. 1995, Self-scheduled Hx control of linear parameter-varying systems: A design example, Automatica, vol. 31, no. 9, pp. 1251-1261.
  • 3. Ballesteros P., Bohn C. 2011a, A frequency-tunable LPVcontroller for car-rowband active noise and vibration control. Proc. of the Am. Control Conf., San Francisco, USA, Jun. 2011, pp. 1340-1345.
  • 4. Ballesteros P., Bohn C. 2011b, Disturbance rejection through LPV gain--scheduling control with application to active noise cancellation. Proc. of the IFAC World Congr., Milan, Italy, Aug. 2011, pp. 7897-7902.
  • 5. Ballesteros P., Heins W., Shu X., Bohn C. 2012, LPV Gain-scheduling output feedback for active control of harmonic disturbances with time-varying frequencies, [in:] Zapateiro M., Pozo F. (eds.), Advances on Analysis and Control of Vibrations - Theory and Applications, In-Tech, Rijeka, Croatia, pp. 65-86. Available: http://dx.doi.org/10.5772/ 50294
  • 6. Ballesteros P., Shu X., Heins W., Bohn C. 2013, Reduced-order two-parameter pLPV controller for the rejection ofnonstationary harmonically related multisine disturbances. Proc. of the Eur. Control Conf, Zurich, Switzerland, July 2013, pp. 1835-1842.
  • 7. Bohn C, Cortabarria A., Hartel V., Kowalczyk K. 2003, Disturbance-observer-based active control of engine-induced vibrations in automotive vehicles. Proc. of the SPIE's 10th Annu. Int. Symp. on Smart Struct, and Mater., San Diego, USA, Mar. 2003, pp. 5049-5068.
  • 8. Bohn C, Cortabarria A., Hartel V., Kowalczyk K. 2004, Active control of engine-induced vibrations in automotive vehicles using disturbance observer gain scheduling. Control Eng. Pract, vol. 12, no. 8, pp. 1029-1039.
  • 9. Daafouz J., Bara G., Kratz F., Ragot J. 2000, State observers for discrete-time LPV systems: an interpolation based approach. Proc. of the 39th IEEE Conf. on Decis. and Control, Sydney, Australia, Dec. 2000, vol. 5, pp. 4571-4572.
  • 10. Dettori M., Scherer C. 2001, LPV design for a CD player: an experimental evaluation of performance. Proc. of the 40th IEEE Conf. on Decis. and Control, Orlando, USA, Dec. 2001, pp. 4711-4716.
  • 11. Du H., Zhang L., Shi X. 2003, LPV technique for the rejection of sinusoidal disturbance with time-varying frequency. IEE Proc.-Control Theory and Appl., vol. 150, no 2, pp. 132-138.
  • 12. Duarte E, Ballesteros P., Shu X., Bohn C. 2012, Active control of the harmonic and transient response of vibrating flexible structures with pie-zoelectric actuators. Proc. of the Int. Conf. and Exhib. of New Actuators and Drive Syst. ACTUATOR 12, Bremen, Germany, June 2012, pp. 447^150.
  • 13. Duarte F, Ballesteros P., Shu X., Bohn C. 2013, An LPV discrete-time controller for the rejection of harmonic time-varying disturbances in a lightweight flexible structure. Proc. of the Am. Control Conf, Washington, USA, June 2013, pp. 4092-4097.
  • 14. Francis B., Wonham W. 1976, The internal model principle of control theory. Automatica, vol. 12, no. 5, pp. 457-465.
  • 15. Gahinet P., Nemirovskii A., Laub A., Chilali M. 1995, LMI control toolbox. The Mathworks Inc.
  • 16. Gupta V., Sharma M., Thakur N., 2010, Optimization criteria for optimal placement ofpiezoelectric sensors and actuators on a smart structure: a technical review. J. Intell. Mater. Syst. and Struct., vol. 21, no. 12, pp. 1227-1243.
  • 17. Heins W., Ballesteros P., Bonn C. 2011, Gain-scheduled state-feed-back control for active cancellation of multisine disturbances with time-varying frequencies. Proc. of the 10th MARDiH Conf. on Active Noise and Vib. Control Methods, Wojanow, Poland, June 2011, pp. 45-62. Available: http://www.vibrationcontrol.pl/file/pdfs/p45. pdf
  • 18. Heins W., Ballesteros P., Bohn C. 2012a, Experimental evaluation of an LPV-gain-scheduled observer for rejecting multisine disturbances with time-varying frequencies. Proc. of the Am. Control Conf., Montreal, Canada, June 2012, pp. 768-774.
  • 19. Heins W., Ballesteros P., Shu X., Bohn C. 2012b, LPV Gain-scheduled Observer-based State Feedback for Active Control of Harmonic Dis-turbances with Time-varying Frequencies, [in:] Zapateiro M., Pozo F. (eds.), Advances on Analysis and Control of Vibrations - Theory and Applications, InTech, Rijeka, Croatia, pp. 35-64. Available: http://dx.doi.org/10.5772/50293
  • 20. Kermani M., Moallem M. Patel R. 2008, Applied vibration suppression using piezoelectric materials. Nova, New York.
  • 21. Kinney C, Callafon R. 2006, An adaptive internal model-based controller for periodic disturbance rejection. Proc. of the 14th IFAC Symp. on Syst. Identif, Newcastle, Australia, Mar. 2006, pp. 273-278.
  • 22. Kuo S., Morgan D. 1996, Active noise control systems: algorithms and DSP implementations. Wiley, New York.
  • 23. Oh J., Park S., Hong J., Shin J. 1998, Active vibration control of flexible cantilever beam using piezo actuator and filtered-X IMS algorithm. KSME Int. J., vol. 12, no. 6, pp. 665-671.
  • 24. Onat C, Sahin M., Yaman Y, Prasad S., Nemana S. 2011, Design of an LPV based fractional controller for the vibration suppression of a smart beam. Int. Workshop Smart Mater, Struct. & NDT in Aerosp., Montreal, Canada, Nov. 2011.
  • 25. Shouwe G., Zhiyuan G., Yong S., Jincong Y, Xiaojin Z. 2010, Performance analysis and comparison of FXLMS and FULMS algorithm for active structure vibration control. Proc. of the 2nd Int. Conf. on Adv. Com-put. Control, Shenyang, China, Mar. 2010, pp. 197-201.
  • 26. ShuX., Ballesteros P., BohnC. 2011, Active vibration control for harmonic disturbances with time-varying frequencies through LPV gain sched-uling. Proc. of the 23rd Chin. Control and Decis. Conf, Mianyang, China, May 2011, pp. 728-733.
  • 27. Shu X., Heins W., Ballesteros P., Bohn C. 2013, Two-parameter pLPV modeling ofnonstationary harmonically related multisine disturbances for reduced-order gain-scheduling control. Proc. of the 32nd IAESTED Int. Conf. on Model., Identif. and Control, Innsbruck, Austria, Feb. 2013, pp. 404-411.
  • 28. Stilwell D., Rugh W. 1998, Interpolation of observer state feedback controllers for gain scheduling. Proc. of the Am. Control Conf, Philadelphia, USA, June 1998, vol. 2, pp. 1215-1219.
  • 29. Takagi K., Saigo M. 2006, Vibration control of a smart structure with identification of a crack experimental verification of a gain-scheduled controller. Proc. of the SPIE Smart Struct, and Mater, San Diego, USA, Feb. 2006, pp. 61661A.1-61661A.12.
  • 30. Tliba S., Varnier M. 2010, Dealing with actuator saturation for active vi¬bration control of a flexible structure piezo-actuated [sic]. Proc. of the IEEE Int. Conf. on Control Appl., Yokohama, Japan, Sep. 2010, pp. 1743-1748.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-674ea030-be57-4ffb-8fbf-74ced8e5bb7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.