PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microwave plasma for hydrogen production from liquids

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
PLASMA-2015 International Conference on Research and Applications of Plasmas (7-11 September 2015 ; Warsaw, Poland)
Języki publikacji
EN
Abstrakty
EN
The hydrogen production by conversion of liquid compounds containing hydrogen was investigated experimentally. The waveguide-supplied metal cylinder-based microwave plasma source (MPS) operated at frequency of 915 MHz at atmospheric pressure was used. The decomposition of ethanol, isopropanol and kerosene was performed employing plasma dry reforming process. The liquid was introduced into the plasma in the form of vapour. The amount of vapour ranged from 0.4 to 2.4 kg/h. Carbon dioxide with the fl ow rate ranged from 1200 to 2700 NL/h was used as a working gas. The absorbed microwave power was up to 6 kW. The effect of absorbed microwave power, liquid composition, liquid fl ow rate and working gas fl ow rate was analysed. All these parameters have a clear infl uence on the hydrogen production effi ciency, which was described with such parameters as the hydrogen production rate [NL(H2)/h] and the energy yield of hydrogen production [NL(H2)/kWh]. The best achieved experimental results showed that the hydrogen production rate was up to 1116 NL(H2)/h and the energy yield was 223 NL(H2) per kWh of absorbed microwave energy. The results were obtained in the case of isopropanol dry reforming. The presented catalyst-free microwave plasma method can be adapted for hydrogen production not only from ethanol, isopropanol and kerosene, but also from different other liquid compounds containing hydrogen, like gasoline, heavy oils and biofuels.
Czasopismo
Rocznik
Strony
185--190
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, 14 Fiszera Str., 80-231 Gdańsk, Poland, Tel.: +48 58 699 5214, Fax: +48 58 341 61
autor
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, 14 Fiszera Str., 80-231 Gdańsk, Poland, Tel.: +48 58 699 5214, Fax: +48 58 341 61
autor
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, 14 Fiszera Str., 80-231 Gdańsk, Poland, Tel.: +48 58 699 5214, Fax: +48 58 341 61
autor
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, 14 Fiszera Str., 80-231 Gdańsk, Poland, Tel.: +48 58 699 5214, Fax: +48 58 341 61
  • Department of Marine Electronics, Gdynia Maritime University, 81-87 Morska Str., 81-225 Gdynia, Poland
autor
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, 14 Fiszera Str., 80-231 Gdańsk, Poland, Tel.: +48 58 699 5214, Fax: +48 58 341 61
Bibliografia
  • 1. Kabouzi, Y., Moisan, M., Rostaing, J. C., Trassy, C., Guerin, D., Kéroack, D., & Zakrzewski, Z. (2003). Abatement of perfl uorinated compounds using microwave plasmas at atmospheric pressure. J. Appl. Phys., 93(12), 9483–9496. DOI: 10.1063/1.1574595.
  • 2. Moisan, M., & Pelletier, J. (1992). Microwave excited plasmas. Amsterdam, Holland: Elsevier.
  • 3. Mizeraczyk, J., Dors, M., Jasiński, M., Hrycak, B., & Czylkowski, D. (2013). Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms. Eur. Phys. J. Appl. Phys., 61, 24309. DOI: 10.1051/epjap/2012120405.
  • 4. Czylkowski, D., Hrycak, B., Jasiński, M., Dors, M., & Mizeraczyk, J. (2013). Atmospheric pressure microwave microplasma microorganisms deactivation. Surf. Coat. Technol., 234, 114–119. DOI: 10.1016/j.surfcoat.2013.04.010.
  • 5. Chen, H. H., Weng, C. C., Liao, J. D., Chen, K.M., & Hsu, B. W. (2009). Photo-resist stripping process using atmospheric pressure microplasma system. J. Phys. D-Appl. Phys., 42(13), 1–8. DOI: 10.1088/0022-3727/42/13/135201.
  • 6. Denes, F. S., & Manolache, S. (2004). Macromolecular plasma-chemistry: an emerging field of polymer science. Prog. Polym. Sci., 29(8), 815–885. DOI:10.1016/ j.progpolymsci.2004.05.001.
  • 7. Chu, P. K., Chen, J. Y., Wang, L. P., & Huang, N. (2002). Plasma-surface modification of biomaterials. Mater. Sci. Eng. R, 36(5/6), 143–206. DOI: 10.1016/S0927-796X(02)00004-9.
  • 8. Morent, R., de Geyter, N., Verschuren, J., de Clerck, K., Kiekens, P., & Leys, C. (2008). Non-thermal plasma treatment of textiles. Surf. Coat. Technol., 202(14),3427–3449. DOI: 10.1016/j.surfcoat.2007.12.027.
  • 9. Tendero, C., Tixier, C., Tristant, P., Desmaison, J., & Leprince, P. (2006). Atmospheric pressure plasmas: A review. Spectrochim. Acta Part B, 61(1), 02–30. DOI: 10.1016/j.sab.2005.10.003.
  • 10. Jasiński, M., Mizeraczyk, J., Zakrzewski, Z., Ohkubo, T., & Chang, J. S. (2002). CFC-11 destruction by microwave plasma torch generated atmospheric-pressure nitrogen discharge. J. Phys. D-Appl. Phys., 35(18), 2274–2280. DOI: 10.1088/0022-3727/35/18/308.
  • 11. Baeva, M., Gier, H., Pott, A., Uhlenbusch, J., Hoschele, J., & Steinwandel, J. (2002). Pulsed microwave discharge at atmospheric pressure for NOx decomposition. Plasma Sources Sci. Technol., 11(1), 1–9. DOI: 10.1088/0963-0252/11/1/301.
  • 12. Jasiński, M., Dors, M., & Mizeraczyk, J. (2009). Destruction of freon HFC-134a using a nozzleless microwave plasma source. Plasma Chem. Plasma Process., 29(5), 363–372. DOI: 10.1007/s11090-009-9183-1.
  • 13. Mizeraczyk, J., Jasiński, M., Nowakowska, H., & Dors, M. (2012) Studies of atmospheric-pressure microwave plasmas used for gas processing. Nukleonika, 57(2), 241–247
  • 14. Jasiński, M., Czylkowski, D., Hrycak, B., Dors, M., & Mizeraczyk, J. (2013). Atmospheric pressure microwave plasma source for hydrogen production. Int. J. Hydrog. Energy, 38(26), 11473–11483. DOI:10.1016/j.ijhydene.2013.05.105.
  • 15. Mizeraczyk, J., Urashima, K., Jasiński, M., & Dors, M. (2014). Hydrogen production from gaseous fuels by plasmas – A review. Int. J. Plasma Env. Sci. Technol., 8(2), 89–97.
  • 16. Hrycak, B., Czylkowski, D., Miotk, R., Dors, M., Jasiński, M., & Mizeraczyk, J. (2014). Application of atmospheric pressure microwave plasma source for hydrogen production from ethanol. Int. J. Hydrog.Energy, 39(26), 14184–14190. DOI: 10.1016/j.ijhydene.2014.02.160.
  • 17. Hrycak, B., Czylkowski, D., Miotk, R., Dors, M.,Jasinski, M., & Mizeraczyk, J. (2015). Hydrogen production from ethanol in nitrogen microwave plasma at atmospheric pressure. Open Chem., 13(1), 317–324. DOI: 10.1515/chem-2015-0039.
  • 18. Czylkowski, D., Hrycak, B., Miotk, R., Jasiński,M., Dors, M., & Mizeraczyk, J. (2015). Hydrogen production by conversion of ethanol using atmospheric pressure microwave plasmas. Int. J. Hydrog. Energy, 40(40), 14039–14044. DOI: 10.1016/j.ijhydene.2015.06.101.
  • 19. Randolph, K. (2013). Hydrogen production. In Hydrogen and Fuel Cells – Annual Merit Review and Peer Evaluation Meeting, May 13–17, 2013, Arlington, Virginia, USA. U.S. Department of Energy (DOE).
  • 20. Bromberg, L., Cohn, D. R., & Rabinovich, A. (1997). Plasma reformer-fuel cell system for decentralized power applications. Int. J. Hydrog. Energy, 22(1), 83–94. DOI: 10.1016/0360-3199(95)00121-2.
  • 21. Bromberg, L., Cohn, D. R., Rabinovich, A., Alexeev, N., Samokhin, A., Ramprasad, R., & Tamhankar, S. (2000). System optimization and cost analysis of plasma catalytic reforming of natural gas. Int. J. Hydrog. Energy, 25(12), 1157–1161. DOI: 10.1016/ S0360-3199(00)00048-3.
  • 22. Sekiguchi, H., & Mori, Y. (2002). Steam plasma reforming using microwave discharge. Thin Solid Films, 435(1/2), 44–48. DOI: 10.1016/S0040-6090(03)00379-1.
  • 23. Liu, K., Song, Ch., & Subramani, V. (2010). Hydrogen and syngas production and purification technologies.Hoboken, New Jersey, USA: John Wiley & Sons, Inc
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-674e9745-13cb-48c5-a2bd-fee3361db6db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.