PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The determination of the carriers recombination parameters based on the HOT HgCdTe current-voltage characteristics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A theoretical analysis of the mid-wavelength infrared range detectors based on the HgCdTe materials for high operating temperatures is presented. Numerical calculations were compared with the experimental data for HgCdTe heterostructures grown by the MOCVD on the GaAs substrates. Theoretical modelling was performed by the commercial platform SimuAPSYS (Crosslight). SimuAPSYS fully supports numerical simulations and helps understand the mechanisms occurring in the detector structures. Theoretical estimates were compared with the dark current density experimental data at the selected characteristic temperatures: 230 K and 300 K. The proper agreement between theoretical and experimental data was reached by changing Auger-1 and Auger-7 recombination rates and Shockley-Read-Hall carrier lifetime. The level of the match was confirmed by a theoretical evaluation of the current responsivity and zero-bias dynamic resistance area product (R0A) of the tested detectors.
Rocznik
Strony
art. no. e141596
Opis fizyczny
Bibliogr. 31 poz., wykr., tab.
Twórcy
  • Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  • Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  • VIGO System S.A., 129/133 Poznańska St., 05-850 Ożarów Mazowiecki, Poland
  • Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
  • [1] Lawson, W. D., Nielson, S., Putley, E. H. & Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. J. Phys. Chem. Solids 9, 325-329 (1959). https://doi.org/10.1016/0022-3697(59)90110-6
  • [2] Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267-2336 (2005). https://doi.org/10.1088/0034-4885/68/10/r01
  • [3] Hansen, G. L., Schmit, J. L. & Casselman, T. N. Energy gap versus alloy composition and temperature in Hg1-xCdxTe. J. Appl. Phys. 53, 7099-7101 (1982). https://doi.org/10.1063/1.330018
  • [4] Harman, T. C. & Strauss, J. Band structure of HgSe and HgSe-HgTe alloys. J. Appl. Phys. 32, 2265-2270 (1961). https://doi.org/10.1063/1.1777057
  • [5] Martyniuk, P. & Rogalski, A. Performance comparison of barrier detectors and HgCdTe photodiodes. Opt. Eng. 53, 106105 (2014). https://doi.org/10.1117/1.OE.53.10.106105
  • [6] Rogalski, A. Infrared and Terahertz Detectors. (3rd ed.) (CRC Press Taylor & Francis Group, 2020). https://doi.org/10.1201/b21951
  • [7] Lei, W., Antoszewski, J. & Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and Detectors. Appl. Phys. Rev. 2, 041303 (2015). https://doi.org/10.1063/1.4936577
  • [8] Norton, P. HgCdTe infrared detectors. Opto-Electron. Rev. 10, 159-174 (2002). https://optor.wat.edu.pl/10(3)159.pdf
  • [9] Qiu, W. C., Jiang, T. & Cheng, X. A. A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector. J. Appl. Phys. 118, 124504 (2015). https://doi.org/10.1063/1.4931661
  • [10] Iakovleva, N. I. The study of dark currents in HgCdTe hetero-structure photodiodes. J. Commun. Technol. Electron. 66, 368-374 (2021). https://doi.org/10.1134/S1064226921030220
  • [11] Martyniuk, P. & Rogalski, A. HOT infrared photodetectors. Opto-Electron. Rev. 21, 240-258 (2013). https://doi.org/10.2478/s11772-013-0090-x
  • [12] Piotrowski, J. & Rogalski, A. Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 46, 115-131 (2004). https://doi.org/10.1016/j.infrared.2004.03.016
  • [13] Elliott, C. T. Non-equilibrium mode of operation of narrow-gap semiconductor devices. Semicond. Sci. Technol. 5, S30-S37 (1990). https://doi.org/10.1088/0268-1242/5/3S/008
  • [14] Maimon, S. & Wicks, G. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  • [15] Kopytko, M., Kębłowski , A., Gawron, W. & Pusz, W. LWIR HgCdTe barrier photodiode with Auger-suppression. Semicond. Sci. Technol. 31, 035025 (2016). https://doi.org/10.1088/0268-1242/31/3/035025
  • [16] He, J. et al. Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode. Opt. Express 28, 33556 (2020). https://doi.org/10.1364/OE.408526
  • [17] Gawron, W. et al. MOCVD Grown HgCdTe heterostructures for medium wave infrared detectors. Coatings 11, 611 (2021). https://doi.org/10.3390/coatings11050611
  • [18] Kębłowski, A. et al. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors. Proc. SPIE. 9819, 98191E-1 (2016). https://doi.org/10.1117/12.2229077
  • [19] APSYS Macro/User’s Manual ver. 2011. Crosslight Software, Inc. (2011).
  • [20] Capper, P. P. Properties of Narrow Gap Cadmium-Based Compounds. (INSPEC, the Institution of Electrical Engineers, 1994).
  • [21] Long, F. et al. The structural dependence of the effective mass and Luttinger parameters in semiconductor quantum wells. J. Appl. Phys. 82, 3414-3421 (1997). https://doi.org/10.1063/1.365657
  • [22] Lopes, V. C., Syllaios, A. J. & Chen, M. C. Minority carrier lifetime in mercury cadmium telluride. Semicond. Sci. Technol. 8, 824–841 (1993). https://doi.org/10.1088/0268-1242/8/6s/005
  • [23] Aleshkin, V.Y. et al. Auger recombination in narrow gap HgCdTe/CdHgTe quantum well heterostructures. J. Appl. Phys. 129, 133106 (2021). https://doi.org/10.1063/5.0046983
  • [24] Reine, M. B. et al. HgCdTe MWIR back-illuminated electron-initiated avalanche photodiode arrays. J. Electron. 36, 1059-1067 (2007). https://doi.org/10.1007/s11664-007-0172-y
  • [25] Schuster, J. et al. Junction optimization in HgCdTe: Shockley-Read-Hall generation-recombination suppression. Appl. Phys. Lett. 107, 023502 (2015). https://doi.org/10.1063/1.4926603
  • [26] Schacham, S. E. & Finkman, E. Recombination mechanisms in p-type HgCdTe: Freezeout and background flux effects. J. Appl. Phys. 57, 2001-2009 (1985). https://doi.org/10.1063/1.334386
  • [27] Zhu, L. et al. Temperature-dependent characteristics of HgCdTe mid-wave infrared e-avalanche photodiode. IEEE J. Sel. Top. Quantum Electron. 28, 3802709 (2022). https://doi.org/10.1109/JSTQE.2021.3121273
  • [28] Kopytko, M., Jóźwikowski, K., Martyniuk, P. & Rogalski, A. Photon recycling effect in small poxel p-i-n HgCdTe long wavelenght infrared photodiodes. Infrared Phys. Technol. 97, 38–42 (2019). https://doi.org/10.1016/j.infrared.2018.12.015
  • [29] Olson, B. V. et al. Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices. Appl. Phys. Lett. 107, 261104 (2015). https://doi.org/10.1063/1.4939147
  • [30] Beattie, A. R. & Landsberg, P. T. Auger effect in semiconductors. Proc. Math. Phys. Eng. Sci. A249, 16-29 1959. https://doi.org/10.1098/rspa.1959.0003
  • [31] Krishnaumurthy, S. & Casselman, T. N. A detailed calculation of the Auger lifetime in p-type HgCdTe. J. Electron. Mater. 29, 828-831 (2000). http://doi.org/10.1007/s11664-000-0232-z
Uwagi
This work was supported by the National Science Centre (Poland), grant no. UMO-2019/33/B/ST7/00614; and by the National Centre for Research and Development grant no. RPMA.01.02.00-14-b451/18-00.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-674c400f-d6eb-4daf-82e7-c2fd32e1f363
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.