PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and pilot model research of spiral cyclone with curvilinear channels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The advanced type of cyclone was applied to separate wood particulate matter from the air. The cyclone was designed in the laboratory of Vilnius TECH. A series of experimental studies was conducted both in the lab and under industrial conditions. These studies aimed to specify the air velocity and aerodynamic resistance in the experimental and pilot six-channel cyclone with spiral casings and curvilinear semi-rings. Air treatment efficiency was also determined. The highest air treatment efficiency achieved using experimental cyclone was 91.4%, while the pilot cyclone achieved an efficiency of 94. 5%. The industrial and experimental cyclones were found to have similar air treatment efficiency.
Rocznik
Strony
127--134
Opis fizyczny
Bibliogr. 26 poz., fot., rys., tab., wykr.
Twórcy
  • Utenos Kolegija / Higher Education Institution, Lithuania
  • Vilnius TECH, Lithuania
  • JSC "Molėtų Švara", Lithuania
  • National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Ukraine
Bibliografia
  • 1. Baltrėnas, P. & Chlebnikovas, A. (2019). Removal of fine solid particles in aggressive gas s in a newly designed multi-channel cyclone, Powder technology, 356, pp. 480-492. DOI:10.1016/j.powtec.2019.08.018
  • 2. Baltrėnas, P., Crivellini, A., Leonavičienė, T. & Chlebnikovas, A. (2022). Investigation on particulate matter and gas processes in the advanced multi-channel cyclone-separator with secondary gas inlets, Environmental engineering research, 27, 1, pp. 1-13. DOI:10.4491/eer.2020.550
  • 3. Baltrėnas, P. & Baltrėnaitė, E. (2018). The experimental study on the principal aerodynamic characteristics and their influence on the efficiency in a cylindrical two-level six-channel cyclone to remove dissimilar types of particles, International Journal of Environmental Research, 12, 4, pp. 459-469. DOI:10.1007/s41742-018-0104-0
  • 4. Baltrėnas, P. & Chlebnikovas, A. (2018). The investigation of the structure and operation of a multi-channel cyclone, separating fine solid particles from an aggressive dispersed gas and vapour, Powder technology, 333, pp. 327-338. DOI:10.1016/j.powtec.2018.04.043
  • 5. Baltrėnas, P. & Chlebnikovas, A. (2016). Numerical study of the aerodynamic parameters in a two-level multichannel cyclone, Separation Science and Technology, 51, 12, pp. 2105-2113. DOI:10.1080/01496395.2016.1201112
  • 6. Bernardo, S., Mori, M., Peres, A.P. & Dionisio, R.P. (2006). 3-D computational fluid dynamics for gas and gas-particle s in a cyclone with different inlet section angles, Powder Technology, 162, 3, pp. 190–200. DOI:10.1016/j.powtec.2005.11.007
  • 7. Cheberyachko, S., Cheberyachko, Y., Naumov, M. & Deryugin, O. (2022). Development of an algorithm for effective design of respirator half-masks and encapsulated particle filters, International Journal of Occupational Safety and Ergonomics, 28, 2, pp. 1145-1159. DOI:10.1080/10803548.2020.1869429
  • 8. Chlebnikovas, A., Paliulis, D., Kilikevičienė, K. & Kilikevičius, A. (2022). Experimental research of gaseous emissions impact on the performance of new-design cylindrical multi-channel cyclone with adjustable half-rings, Sustainability, 14, 2, pp. 1-20. DOI:10.3390/su14020902
  • 9. Chlebnikovas, A., Kilikevičius, A., Selech, J., Matijošius, J., Kilikevičienė, K., Vainorius, D., Passerini, G. & Marcinkiewicz, J. (2021). The numerical modeling of gas movement in a single inlet new generation multi-channel cyclone separator, Energies, 14, 23, pp. 1-18. DOI:10.3390/en14238092
  • 10. Chlebnikovas, A. (2021). Experimental investigation of a one-level eight-channel cyclone-separator incorporating quarter-rings, Hemijska industrija, 75, 4, pp. 241-251. DOI:10.2298/HEMIND210307024C
  • 11. Chlebnikovas, A. & Kilikevičius, A. (2023). Study on gas flow parameters and fractional removal efficiency of ultrafine particulate matter in newly developed electro cyclone-filter, Atmosphere, 14, 3, 527. DOI:10.3390/atmos14030527
  • 12. Duran, J.Z. & Caldona, E.B. (2020). Design of an activated carbon equipped-cyclone separator and its performance on particulate matter removal, Particulate Science and Technology, 38, 6, pp. 694-702. DOI:10.1080/02726351.2019.1607637
  • 13. El-Emam, M.A., Shi, W. & Zhou, L. (2019). CFD-DEM simulation and optimization of gas-cyclone performance with realistic macroscopic particulate matter, Advanced Powder Technology, 30, 11, pp. 2686-2702. DOI:10.1016/j.apt.2019.08.015
  • 14. El-Emam, M.A., Zhou, L., Shi, W. & Han, C. (2021). Performance evaluation of standard cyclone separators by using CFD–DEM simulation with realistic bio-particulate matter, Powder Technology, 385, pp. 357-374. DOI:10.1016/j.powtec.2021.03.006
  • 15. Janta-Lipińska, S. & Shkarovskiy, A. (2020). Investigations of nitric oxides reduction in industrial-heating boilers with the use of the steam injection method, Archives of Environmental Protection, 46, 2, pp. 100-107. DOI:10.24425/aep.2020.133480
  • 16. Jasevičius, R., Kruggel-Emden, H. & Baltrėnas, P. (2017). Numerical simulation of the sticking process of glass-microparticles to a flat wall to represent pollutant-particles treatment in a multi-channel cyclone, Particuology, 32, pp. 112-131. DOI:10.1016/j.partic.2016.09.009
  • 17. Karjalainen, A., Leppänen, M., Ruokolainen, J., Hyttinen, M., Miettinen, M., Säämänen, A. & Pasanen P. (2022). Controlling flour dust exposure by an intervention focused on working methods in Finnish bakeries: a case study in two bakeries, International Journal of Occupational Safety and Ergonomics, 28, 3, pp. 1948-1957. DOI:10.1080/10803548.2021.1943867
  • 18. Keet, C.A., Keller, J.P. & Peng, R.D. (2018). Long-term coarse particulate matter exposure is associated with asthma among children in Medicaid, American journal of respiratory and critical care medicine, 197, 6, pp. 737-746. DOI:10.1164/rccm.201706-1267OC
  • 19. Olszowski, T. (2015). Concentration Changes Of PM Under Liquid Precipitation Conditions, Ecological Chemistry and Engineering S, 22, 3, pp. 363-378. DOI:10.1515/eces-2015-0019
  • 20. Primus, A., Chmielniak, T. & Rosik-Dulewska, C. (2021). Concepts of energy use of municipal solid waste, Archives of Environmental Protection, 47, 2, pp. 70-80. DOI:10.24425/aep.2021.137279
  • 21. Vaišis, V., Chlebnikovas, A. & Jasevičius, R. (2023). Numerical study of the flow of pollutants during air purification, taking into account the use of eco-Friendly material for the filter—Mycelium, Applied Sciences, 13, 3, 1703. DOI:10.3390/app13031703
  • 22. Vaitiekūnas, P., Petraitis, E., Venslovas, A. & Chlebnikovas, A. (2014). Air stream velocity modelling in multichannel spiral cyclone separator, Journal of Environmental Engineering and Landscape Management, 22, 3, pp. 183-193. DOI:10.3846/16486897.2014.931283
  • 23. Wasielewski, R., Wojtaszek, M. & Plis, A. (2020). Investigation of fly ash from co-combustion of alternative fuel (SRF) with hard coal in a stoker boiler, Archives of Environmental Protection, 46, 2, pp. 58-67. DOI:10.24425/aep.2020.133475
  • 24. Werner, M., Kryza, M. & Dore, A.J. (2016). Spatial and chemical patterns of PM-differences between a maritime and an inland country, Ecological Chemistry and Engineering S, 23, 1, pp. 61-69. DOI:10.1515/eces-2016-0004
  • 25. Zamani, A., Khanjani, N., Bagheri Hosseinabadi, M., Ranjbar Homghavandi, M. & Miri, R. (2021). The effect of chronic exposure to flour dust on pulmonary functions, International Journal of Occupational Safety and Ergonomics, 27, 2, pp. 497-503. DOI:10.1080/10803548.2019.1582853
  • 26. Zuo, B., Liu, C., Chen, R., Kan, H., Sun, J., Zhao, J., Wang, C., Sun, Q. & Bai, H. (2019). Associations between short-term exposure to fine particulate matter and acute exacerbation of asthma in Yancheng, China, Chemosphere, 237, pp. 124497. DOI:10.1016/j.chemosphere.2019.124497
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6749e291-fe61-45a0-9fee-d7fe8ef1cec6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.