PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Sensitivity and reliability analyses of lateral-torsional buckling resistance of steel beams

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented paper deals with an analysis of the effects of random imperfections on the load carrying capacity of a steel beam, which is subjected to the effects of lateral-torsional buckling arising from equal and opposite end bending moments. The load carrying capacity of a hot-rolled steel beam was analyzed in the analytical form. Histograms obtained from experimental research were available for most imperfections. Realizations of the input imperfections were computed using the Latin Hypercube Sampling method. Global sensitivity analysis was used to identify those imperfections, whose variability has a dominant effect on the load carrying capacity. Sensitivity analysis identified three continuous intervals of beam slenderness in which the load carrying capacity is sensitive to different types of imperfections. Reliability of design according to the EUROCODE 3 standard was verified by performing the statistical analysis of the ultimate limit state.
Rocznik
Strony
1098--1107
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
  • Brno University of Technology, Faculty of Civil Engineering, Department of Structural Mechanics, Veveří Street 95, 602 00 Brno, Czech Republic
Bibliografia
  • [1] T.V. Galambos, A.E. Surovek, Structural Stability of Steel: Concepts and Applications for Structural Engineers, John Wiley & Sons, New Jersey, 2008.
  • [2] J. Zahn, Lateral stability of beams with initial imperfections, Journal of Engineering Mechanics 109 (3) (1983) 821–835.
  • [3] H. Yoshida, K. Maegawa, Lateral instability of I-beams with imperfections, Journal of Structural Engineering 110 (8) (1984) 1875–1892.
  • [4] P. Marek, J. Brozzetti, M. Gustav, P. Tikalsky, Probabilistic Assessment of Structures using Monte Carlo Simulation, TeReCo, Prague, 2003.
  • [5] D. Schillinger, Stochastic FEM based stability analysis of I-sections with random imperfections, (Diploma Thesis), Stuttgart University, 20081–93.
  • [6] D. Schillinger, D. Stefanov, A. Stavrev, The method of separation for evolutionary spectral density estimation of multi-variate and multi-dimensional non-stationary stochastic processes, Probabilistic Engineering Mechanics 33 (2013) 58–78.
  • [7] S. Shayan, K. Rasmussen, H. Zhang, On the modelling of initial geometric imperfections of steel frames in advanced analysis, Journal of Constructional Steel Research (98) (2014) 167–177.
  • [8] Z. Kala, Geometrically non-linear finite element reliability analysis of steel plane frames with initial imperfections, Journal of Civil Engineering and Management 18 (1) (2012) 81–90.
  • [9] J. Melcher, Z. Kala, M. Holický, M. Fajkus, L. Rozlívka, Design characteristics of structural steels based on statistical analysis of metallurgical products, Journal of Construction Research 60 (3–5) (2004) 795–808.
  • [10] Z. Kala, Stability problems of steel structures in the presence of stochastic and fuzzy uncertainty, Thin Walled Structures 45 (10–11) (2007) 861–865.
  • [11] EN 1990, Eurocode-Basic of Structural Design, CEN, Brussels, 2002.
  • [12] EN 1993-1-1, Eurocode 3: Design of Steel Structures. Part 1-1. General Rules and Rules for Buildings, CEN, Brussels, 2004.
  • [13] G. Sedlacek, H. Stangenberg, Design philosophy of Eurocodes – background information, Journal of Constructional Steel Research 54 (1) (2000) 173–190.
  • [14] G. Sedlacek, Ch. Müller, The European standard family and its basis, Journal of Constructional Steel Research 62 (11) (2006) 1047–1059.
  • [15] N.S. Trahair, The Behaviour and Design of Steel Structures, John Wiley & Sons, New York, 1977.
  • [16] Z. Kala, Elastic lateral-torsional buckling of simply supported hot-rolled steel I-beams with random imperfections, Procedia Engineering 57 (2013) 504–514.
  • [17] Z. Kala, Reliability analysis of the lateral torsional buckling resistance and the ultimate limit state of steel beams with random imperfections, Journal of Civil Engineering and Management 21 (7) (2015) 902–911.
  • [18] A. Saltelli, K. Chan, E.M. Scott, Sensitivity Analysis, Wiley Series in Probability and Statistics, John Wiley & Sons, New York, 2004.
  • [19] Z. Kala, Sensitivity assessment of steel members under compression, Engineering Structures 31 (6) (2009) 1344–1348.
  • [20] A.G.M. Michell, Elastic stability of long beams under transverse forces, Philosophical Magazine 48 (1899) 298–309.
  • [21] L. Prandtl, Kipperscheinungen (PhD Dissertation), Munich, Germany, 1899.
  • [22] S.P. Timoshenko, Einige Stabilitätsprobleme der Elastizitätstheorie, Collected papers of Stephen P. Timoshenko, McGraw-Hill, New York, 19531–50.
  • [23] S.P. Timoshenko, Sur la stabilité des systèmes élastiques, Collected papers of Stephen P. Timoshenko, McGraw-Hill, New York, 195392–224.
  • [24] S.P. Timoshenko, J.M. Gere, Theory of Elastic Stability, 2nd ed., McGraw-Hill, New York, 1961.
  • [25] Z. Kala, J. Melcher, L. Puklický, Material and geometrical characteristics of structural steels based on statistical analysis of metallurgical products, Journal of Civil Engineering and Management 15 (3) (2009) 299–307.
  • [26] A. Taras, R. Greiner, New design curves for lateral-torsional buckling – proposal based on a consistent derivation, Journal of Constructional Steel Research 66 (5) (2010) 648–663.
  • [27] C. Rebelo, N. Lopes, L. Simões da Silva, D. Nethercot, P.M.M. Vila Real, Statistical evaluation of the lateral-torsional buckling resistance of steel I-beams. Part 1: Variability of the Eurocode 3 resistance model, Journal of Constructional Steel Research 65 (2009) 818–831.
  • [28] G.C. Soares, Uncertainty modelling in plate buckling, Structural Safety 5 (1) (1988) 17–34.
  • [29] JCSS, Probabilistic Model Code. Part 3 – Resistance Models, Joint Committee on Structural Safety, 2001 http://www.jcss. ethz.ch/.
  • [30] M.D. McKey, W.J. Conover, R.J. Beckman, A comparison of the three methods of selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (2) (1979) 239–245.
  • [31] R.C. Iman, W.J. Conover, Small sample sensitivity analysis techniques for computer models with an application to risk assessment, Communications in Statistics – Theory and Methods 9 (17) (1980) 1749–1842.
  • [32] T. Homma, A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety 52 (1) (1996) 1–17.
  • [33] D.G. Cacuci, Sensitivity and Uncertainty Analysis, vol. 1: Theory, Chapman and Hall/CRC Press, Boca Raton, FL, 2003.
  • [34] A. Yazdani-Chamzini, An integrated fuzzy multi criteria group decision making model for handling equipment selection, Journal of Civil Engineering and Management 20 (5) (2014) 660–673.
  • [35] A. Mardani, A. Jusoh, E.K. Zavadskas, Fuzzy multiple criteria decision-making techniques and applications – two decades review from 1994 to 2014, Expert Systems with Applications 42 (8) (2015) 4126–4148.
  • [36] I.H. Yang, Uncertainty and sensitivity analysis of time-dependent effects in concrete structures, Engineering Structures 29 (7) (2007) 1366–1374.
  • [37] R. Sousa, J. Guedes, H. Sousa, Characterization of the uniaxial compression behaviour of unreinforced masonry – sensitivity analysis based on a numerical and experimental approach, Archives of Civil and Mechanical Engineering 15 (2) (2015) 532–547.
  • [38] D. Marčić, A. Cerić, M.S. Kovačević, Selection of a field testing method for karst rock mass deformability by multi criteria decision analysis, Journal of Civil Engineering and Management 19 (2) (2013) 196–205.
  • [39] J. Gottvald, Z. Kala, Sensitivity analysis of tangential digging forces of the bucket wheel excavator SchRs 1320 for different terraces, Journal of Civil Engineering and Management 18 (5) (2012) 609–620.
  • [40] Z. Kala, J. Gottvald, J. Stoniš, A. Omishore, Sensitivity analysis of the stress state in shell courses of welded tanks for oil storage, Engineering Structures and Technologies 6 (1) (2014) 7–12.
  • [41] L. Cascini, F. Portioli, R. Landolfo, Probabilistic time variant assessment of thin-walled steel members under atmospheric corrosion attack, Journal of Civil Engineering and Management 20 (3) (2014) 404–414.
  • [42] M. Kamiński, P. Świta, Structural stability and reliability of the underground steel tanks with the stochastic finite element method, Archives of Civil and Mechanical Engineering 15 (2) (2015) 593–602.
  • [43] I.M. Sobol', Sensitivity estimates for nonlinear mathematical models, Mathematical Modelling and Computational Experiment 1 (4) (1993) 407–414 [Translated from Russian. Sobol', IM. Sensitivity estimates for nonlinear mathematical models. Matematicheskoe Modelirovanie 2 (1) (1990) 112–118].
  • [44] I.M. Sobol', Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation 55 (1–3) (2001) 271–280.
  • [45] T.V. Galambos, Guide to Stability Design Criteria for Metal Structures, Structural Stability Research Council, John Wiley & Sons, New York, 1998.
  • [46] R.D. Ziemian, Guide to Stability Design Criteria for Metal Structures, John Wiley & Sons, New Jersey, 2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6749e265-3ba4-44fa-8b0a-89a309386602
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.