PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of Phytomeliorant Plants for Waste Water Purification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of phytomeliorant plants is one of the promising trends in environmental biotechnology to purify waste water. The study was carried out to understand the phytomeliorative qualities of plants of the indigenous flora of the Turkestan Region under controlled conditions and to develop a method for treating wastewater. It was established that the use of a three-stage treatment of municipal wastewater using phytomeliorant plants: Ceratophуllum demersum L., Potamogeton trichoides Cha. Et Schlecht., Potamogeton pectinatus L., Potamogeton natans L.; Cardamine densiflora N. Gontsch., Sium sizaroideum DC.; Veronica beccabunga L, Veronica anagallis aquatica L. and Azolla caroliniana Willd for 30 days of the controlled experiment reduces the content of organic and mineral ingredients to the MPC values. A method for phyto-meliorative wastewater treatment of one of the sanatoriums in the south of Kazakhstan was developed and carried out in multi-stage bioponds, where water was purified from mineral and organic compounds by 94.9 ± 8.3 – 98.9 ± 7.8% in 12 days. In this study, first of all, nitrogenous compounds were utilized, then there was an active absorption of mineral ions and residual organic matter by plants. In conclusion, significant purification of wastewater was achieved by using indigenous phytomeliorant plants in much shorter time period.
Rocznik
Strony
48--57
Opis fizyczny
Bibliogr. 35 poz., tab.
Twórcy
  • Shymkent University, Shymkent, Karatau district 225, built 426, Kazakhstan
  • Shymkent University, Shymkent, Karatau district 225, built 426, Kazakhstan
  • M.Auezov South Kazakhstan University, Tauke khan avenue, 5, Shymkent, 160000, Kazakhstan 5
  • M.Auezov South Kazakhstan University, Tauke khan avenue, 5, Shymkent, 160000, Kazakhstan 5
Bibliografia
  • 1. Kłosowski S., Kłosowski G. 2001. Water and swamp plants. Oficyna wydawnicza Multico. Warszawa, 335
  • 2. Moore B.C., Funk W.H., Anderson E. 1994. Water quality, fishery and biologic characteristic in a shallow, eutrophic lake with dense macrophyte populations. Lake Reservoir Managem., 8(2), 175–188.
  • 3. Aalami M.T., Abbasi H., Nourani V. 2018. Sustainable management of reservoir water quality and quantity through reservoir operational strategy and watershed control strategies. International Journal of Environmental Research, 12, 773–788. DOI: 10.1007/s41742-018-0130-y
  • 4. Agula C., Akudugu M.A., Mabe F.N., Dittoh S. 2018. Promoting ecosystem-friendly irrigation farm management practices for sustainable livelihoods in Africa: the Ghanaian experience. Agricultural and Food Economics, 6(1), DOI: 10.1186/s40100-018-0109-1
  • 5. Balzan M.V., Caruana J., Zammit A. 2018. Assessing the capacity and flow of ecosystem services in multifunctional landscapes: evidence of a rural-urban gradient in a Mediterranean Small Island State. Land Use Policy, 75, 711–725.
  • 6. Chernicharo C.A.L., Van Lier J., Noyola A., Ribeiro T.B. 2015. Anaerobic sewage treatment: state of the art, constraints and challenges. Reviews in Environmental Science and BioTechnology, 1–31.
  • 7. Oliveira S.M.A.C., Von Sperling M. 2011. Performance evaluation of different wastewater treatment technologies operating in a developing country. Journal of Water, Sanitation and Hygiene for Development, 1(1), 37–56.
  • 8. Bortolini L., Zanin G. 2018. Hydrological behaviour of rain gardens and plant suitability: A study in the veneto plain (north-eastern Italy) conditions. Urban Forestry & Urban Greening, 34, 121–133. DOI: 10.1016/j.ufug.2018.06.007
  • 9. Von Sperling M., Oliveira S.M.A.C. 2009. Comparative performance evaluation of full-scale anaerobic and aerobic wastewater treatment processes in Brazil. Water Science and Technology, 59(1), 15–22.
  • 10. Tleukeyeva A., Alibayev N., Pankiewicz R., Issayeva A.U. 2021. The possibility of using green algae as fertilizer in agriculture. Reports of NAS RK 1(2021), 21–26.
  • 11. Piperd Z., Bau M. 2013. Normalized Rare Earth Elements in Water, Sediments, and Wine: Identifying Sources and Environmental Redox Conditions. American Journal of Analytical Chemistry, 4, 69–83.
  • 12. Adams F.S., MacKenzie D.R., Cole H.Jr., Price M.W. 1971. The influence of nutrient pollution levels upon element constitution and morphology of Elodea canadensis. Enviro. Poll. 1, 285–298.
  • 13. Khan M.U., Moinuddin A., Shaukat S.S., Nazim K., Qadeer M.A. 2013. Effect of industrial waste on early growth and Phyto remediation potential of avicennia marina (Forsk) vierh. Pak. J. Bot., 45(1), 17–27.
  • 14. Mitsch W.J., Jørgensen S.E. 2004. Ecological Engineering and Ecosystem Restoration. John Wiley & Sons, Inc., New York, 4–11.
  • 15. McGrath S.P., Zhao F.J., Lombi E. 2002. Phytoremediation of metals, metalloids, and radionuclides. Adv. Agron., 75, 1–56.
  • 16. Vymazal J. 2009. The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecol. Eng., 35, 1–17.
  • 17. Mustapha H.I., Gupta P.K., Yadav B.K., van Bruggen J.J.A., Lens P.N.L. 2018. Performance evaluation of duplex constructed wetlands for the treatment of diesel contaminated wastewater. Chemosphere. DOI:10.1016/j.chemosphere.2018.04.036
  • 18. Simi A. 2000. Water quality assessment of a surface flow constructed wetland treating oil refinery wastewater. In K. R. Reddy (Ed.), 7th International Conference on Wetlands System for Water Pollution Control. 3, pp. 1295–1304. Lake Buena Vista, Boca Raton, Florida, USA: IWA. Retrieved January 17, 2011.
  • 19. Katanskaya V.M. 1981. Higher aquatic vegetation of the continental reservoirs of the USSR. 256.
  • 20. Lee H.K. 2018. The potential implementation of green infrastructure assessment using highresolution national agriculture imagery program data for sustainable hazard mitigation. International Journal of Sustainable Development & World Ecology, 25(4), 371–381. DOI: 10.1080/13504509.2017.1409821
  • 21. Li Y., Zhang B., Li G., Luo W. 2018. Osmotic membrane bioreactor and its hybrid systems for wastewater reuse and resource recovery: Advances, challenges, and future directions. Current Pollution Reports, 4, 23–34. DOI: 10.1007/s40726-018-0080-1
  • 22. MacIvor J.S., Sookhan N., Arnillas C.A., Bhatt A., Das S., Yasui S.L.E., Cadotte M.W. 2018. Manipulating plant phylogenetic diversity for green roof ecosystem service delivery. Evolutionary Applications, 11(10), 2014–2024. DOI: 10.1111/eva.12703
  • 23. Martinuzzi S., Ramos-González O.M., Muñoz-Erickson T.A., Locke D.H., Lugo A.E., Radeloff V.C. 2018. Vegetation cover in relation to socioeconomic factors in a tropical city assessed from sub-meter resolution imagery. Ecological Applications, 28(3), 681–693. DOI: 10.1002/eap.1673
  • 24. Mor S., Chhavi M.K., Sushil K.K., Ravindra K. 2018. Assessment of hydrothermally modified fly ash for the treatment of methylene blue dye in the textile industry wastewater. Environment, Development and Sustainability, 20, 625–639. DOI: 10.1007/s10668-016-9902-8
  • 25. Nedelciu C.E., Ragnarsdottir K.V., Stjernquist I. 2018. From waste to resource: A systems dynamics and stakeholder analysis of phosphorus recycling from municipal wastewater in Europe. Ambio, 48, 741–751. DOI: 10.1007/s13280-018-1097-9
  • 26. Noori O., Ebrahimnejad R., Deihimfard R. 2018. Impact assessment of green infrastructure on surrounding microclimate (case study: Tehran’s Nature Bridge). Orsini F., Gianquinto G.P., Pennisi G., Cremonini L., Georgiadis T. (Eds.). International Society for Horticultural Science, 279–282.
  • 27. Pratiwi R.D., Fatimah I.S., Munandar A. 2018. Spatial planning for green infrastructure in Yogyakarta City based on land surface temperature. Kaswanto R.L. Ed. Institute of Physics Publishing.
  • 28. Purvis B., Mao Y., Robinson D. 2018. Three pillars of sustainability: In search of conceptual origins. Sustainability Science, 14, 681–695. DOI: 10.1007/s11625-018-0627-5
  • 29. Qiu W., Meng F., Wang Y., Fu G., He J., Savic D., Zhao H. 2018. Assessing spatial and temporal variations in regional sustainability in Mainland China from 2004 to 2014. Clean Technologies and Environmental Policy, 20, 1185–1194. DOI: 10.1007/s10098-018-1540-4
  • 30. Radonic L. 2018. When catching the rain: A cultural model approach to green infrastructure in water governance. Human Organization, 77(2), 172–184. DOI: 10.17730/0018-7259-77.2.172
  • 31. Saeed M.A., Ma H., Yue S., Wang Q., Tu M. 2018. Concise review on ethanol production from food waste: Development and sustainability. Environmental Science and Pollution Research, 25, 28851–28863. DOI: 10.1007/s11356-018-2972-4
  • 32. Salgado I., Carcamo H., Carballo M.E., Cruz M., Duran M.C. 2018. Domestic wastewater treatment by constructed wetlands enhanced with bioremediating rhizobacteria. Environmental Science and Pollution Research, 25, 20391–20398. DOI: 10.1007/s11356-017-9505-4
  • 33. Straupe I., Liepa L. 2018. The relation of green infrastructure and tourism in urban ecosystem. Jelgava, Latvia: Latvia University of Agriculture, 111–116.
  • 34. Sudarsan J.S., Annadurai R., Mukhopadhyay M., Chakraborty P., Nithiyanantham S. 2018. Domestic wastewater treatment using constructed wetland: An efficient and alternative way. Sustainable Water Resources Management, 4, 781–787. DOI: 10.1007/s40899-017-0164-x
  • 35. Khan M.U., Moinuddin A., Shaukat S.S., Nazim K., Qadeer M.A. 2013. Effect of industrial waste on early growth and Phyto remediation potential of avicennia marina (Forsk) vierh. Pak. J. Bot., 45(1),17–27.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6743e4c2-ca18-496d-98b7-5e6720bd4c42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.