PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Integrated Multiphysics Simulation and Built in Control Design of a Three Link Robotic Manipulator

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to create a complex model of a robotic manipulator in a multiphysics simulation environment and design its control exclusively using the built-in resources of this environment, without the application of external analytical or numerical methods for calculating controller parameters. The introductory chapter sets the goal and emphasizes the importance of control systems in technical practice. At the same time, the basic parameters of the modeled mechanism and the characteristics of the operation that the simulated system is to perform are specified. In the following chapters, a simulation model of the mechanism is derived. The kinematic structure of the robotic arm, the number of degrees of freedom, as well as key dynamic characteristics that significantly affect the behavior of the system during movement are described. This model forms the basis for subsequent virtual implementation in the simulation environment. The next part is devoted to the implementation of the simulation model, where the mechanism structure consists of a stationary base, three rotating links and an end effector. The chapter describes in detail the specified motion profiles and boundary conditions of the simulation, which reflect realistic loading and operating modes of the system.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
517--524
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
  • Department of Industrial Automation and Mechatronics Faculty of Mechanical Engineering Technical University of Kosice Košice, Slovakia
autor
  • Department of Industrial Automation and Mechatronics Faculty of Mechanical Engineering Technical University of Kosice Košice, Slovakia
  • Department of Industrial Automation and Mechatronics Faculty of Mechanical Engineering Technical University of Kosice Košice, Slovakia
Bibliografia
  • 1. Zheng, Y., Liu, J. & Huang, Q., 2015. Modeling and control of a 3-link robotic manipulator using PID and sliding mode control. IEEE Transactions on Industrial Electronics, 62(9), pp. 5618-5627
  • 2. Wang, L. & Li, X., 2018. Adaptive and intelligent control for robotic manipulators with unknown dynamics. Journal of Intelligent & Robotic Systems, 91(3-4), pp. 423-436
  • 3. Popescu, D., Ionescu, C. & Georgescu, M., 2018. Dynamic modeling and control of a 3-DOF robotic manipulator. Acta Technica Napocensis, 61(2), pp. 175-182
  • 4. Kumar, A. & Singh, P., 2020. Design, simulation, and control of a 3-DOF planar robotic manipulator using Matlab-Simulink. International Journal of Advanced Robotic Systems, 17(2), p. 1-12
  • 5. Johnson, M., Smith, R. & Brown, T., 2019. Development of a multi-purpose 3-DOF manipulator system for UAV applications. Journal of Robotics and Automation, 35(4), pp. 245-258
  • 6. Lee, S., Park, J. & Kim, H., 2020. Implementation of a 3-DOF planar robotic arm for precise manipulation tasks. Robotics and Autonomous Systems, 128, 103523
  • 7. Dogan, I. (2023) PID-based Practical Digital Control with Raspberry Pi and Arduino Uno. Limbricht: Elektor International Media
  • 8. Landau, D.I., Lozano, R., Saad, M. and Karimi, A. (2011) Adaptive Control: Algorithms, Analysis and Applications. London: Springer
  • 9. Kumar, A., Kasera, S. and Prasad, L.B. (2019) ‘PD/PID-Fuzzy logic controller based tracking control of 2-link robot manipulator’, i-Manager’s Journal on Instrumentation and Control Engineering, 7(2), pp.  18-25
  • 10. Xiao, B., Yin, S., Kaynak, O. (2016) ‘Tracking control of robotic manipulators with uncertain kinematics and dynamics’, IEEE Transactions on Industrial Electronics, 63(10), pp. 6439-6449. doi: 10.1109/TIE.2016.2569068
  • 11. Tijani, I.B., Akmeliawati, R., Muthalif, A.G.A. and Legowo, A. (2011) ‘Optimization of PID controller for flexible link system using a Pareto-based multi-objective differential (PMODE) evolution’, in Proceedings of the 4th International Conference on Mechatronics (ICOM), Kuala Lumpur, Malaysia, 17-19 May 2011. Piscataway, NJ: IEEE, pp.  1-6. doi: 10.1109/ICOM.2011.5937190
  • 12. Baek, J., & Kwon, W. (2020). Practical Adaptive Sliding-Mode Control Approach for Precise Tracking of Robot Manipulators. Applied Sciences, 10(8), 2909
  • 13. Reyes-Uquillas, D., & Hsiao, T. (2021). Safe and intuitive manual guidance of a robot manipulator using adaptive admittance control towards robot agility. Robotics and Computer-Integrated Manufacturing, 70, 102127
  • 14. Prakash, R., Behera, L., Mohan, S., and Jagannathan, S. “Dual-Loop Optimal Control of a Robot Manipulator and Its Application in Warehouse Automation,” in IEEE Transactions on Automation Science and Engineering, vol. 19, no. 1, pp. 262-279, Jan. 2022, doi: 10.1109/TASE.2020.3027394
  • 15. Azeez, M.I., Abdelhaleem, A.M.M., Elnaggar, S., Moustafa, K.A., & Atia, K.R. (2023). Optimization of PID trajectory tracking controller for a 3-DOF robotic manipulator using enhanced Artificial Bee Colony algorithm. Scientific reports, 13(1), 11164
  • 16. Sagova, Z., et al. (2022). ‘Study of anisotropic friction in gears of mechatronic systems‘, Applied Sciences, 2022, Vol. 12 (21), 11021. EISSN 2076-3417
  • 17. Denavit, J., Hartenberg, R.S. (1955) ‘A kinematic notation for lowerpair mechanisms based on matrices‘, J. Appl. Mech., vol. 22, no. 2, pp. 215-221, Jun. 1955
  • 18. Uicker, J.J., Denavit, J., Hartenberg, R.S. (1964) ‘An iterative method for the displacement analysis of spatial mechanisms‘, J. Appl. Mech., vol. 31, no. 2, pp. 309-314, Jun. 1964
  • 19. Huczala, D., Kot, T., Pfurner, M., Krys, V., Bobovský, Z. (2022) ‘Multirepresentations and multiconstraints approach to the numerical synthesis of serial kinematic structures of manipulators‘, IEEE Access. 2022, vol. 10, pp. 68937-68951
  • 20. Grepl, R. (2007) ‘Kinematika a dynamika mechatronických systémů‘, Vysoké učení technické v Brně, 2007.
  • 21. Song, H., Rong, X., Li, Y., (2017). A co-simulation approach based on ADAMS-SIMULINK for development of manipulator position controller. ResearchGate
  • 22. Zajačko, I., Gál, T., Ságová, Y., Mateichyk, V., Wiecek, D. (2018) ‘Application of artificial intelligence principles in mechanical engineering‘, MATEC Web of Conferences 2018
  • 23. Kuether, R.J., Brake, M.R.W., Lamb, D.R. (2020) ‘Integrating control systems with multibody dynamics using ADAMS and MATLAB/Simulink’, Mechanism and Machine Theory, 144, 103121
  • 24. Li, Y., Wang, Y. (2022) ‘Co-simulation of PID control for robotic arm using ADAMS and Simulink’, International Journal of Advanced Robotic Systems, 19(3), pp. 1-12
  • 25. Åström, K.J. and Hägglund, T. (2006) Advanced PID Control. Research Triangle Park: ISA
  • 26. Zhang, B., Li, Y., Chen, H. (2021) ‘Real-time co-simulation platform for vehicle dynamics and control using ADAMS and Simulink’, Simulation Modelling Practice and Theory, 108, 102258
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-674361f3-f4bd-4b20-9b94-166728b8d826
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.