PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-step treatment of harmful industrial wastewater: an analysis of microbial reactor with integrated membrane retention for benzene and toluene removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Standards for highly toxic and carcinogenic pollutants impose strict guidelines, requiring values close to zero, regarding the degradation of such pollutants in industrial streams. In many cases, classic bioremoval processes fail. Therefore, we proposed a stream leaving the microbial membrane bioreactor (MBR) that is directed to an additional membrane separation mode (NF/RO). Under certain conditions, the integrated process not only benefits the environment but may also increase the profitability of the bioreactor operation. An appropriate model was developed and tested in which the bioremoval of benzene and toluene by Pseudomonas fluorescens was used as an example. This paper presents equations for selecting the operation parameters of the integrated system to achieve the expected degree of industrial wastewater purification.
Słowa kluczowe
Rocznik
Strony
15--22
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Wroclaw University of Technology, Group of Bioprocess and Biomedical Engineering, Faculty of Chemistry, Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
autor
  • Wroclaw University of Technology, Group of Bioprocess and Biomedical Engineering, Faculty of Chemistry, Wybrzeze Wyspianskiego, 50-370 Wroclaw, Poland
Bibliografia
  • 1. Christensen, J.S. & Elton, J. (1996). Soil and Groundwater pollution from BTEX. Groundwater Pollution Primer. Civil Engineering Dept., Virginia Tech., USA http://www.webapps.cee.vt.edu/ewr/environmental/teach/gwprimer/btex/btex.html
  • 2. WHO guidelines for indoor air quality: selected pollutants. World Health Organization (2010). ISBN 978 92 890 0213 4.
  • 3. Vahatalo, A.V., Aamos, H. & Mantyniemi, S. (2010). Biodegradability continuum and biodegradation kinetics of natural organic matter described by the beta distribution. Biogeochemistry 100, 227–240. DOI: 10.1007/s10533-010-9419-4.
  • 4. Liu, L., Tindall, J.A., Friedel, M.J. & Zhang, W. (2007). Biodegradation of organic chemicals in soil/water microcosms system – Model development. Water Air Soil Pollut. 178, 131–143. DOI: 10.1007/s11270-006-9185-z.
  • 5. Balasubramanian, P., Philip, L. & Bhallamudi, S.M. (2011). Biodegradation of Chlorinated and Non-chlorinated VOCs from Pharmaceutical Industries. Appl. Biochem. Biotechnol. 163, 497–518. DOI: 10.1007/s12010-010-9057-2.
  • 6. Agarry, S.E. & Solomon, B.O. (2008). Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. Int. J. Environ. Sci. Tech. 5(2), 223–232.
  • 7. Trusek-Holownia, A. (2011). Membrane Bioreactors – Models for Bioprocess Design. Desalination Publications, USA.
  • 8. Schleger, H.G. (1992). Allgemeine microbiologie (in german). Georg Thieme Verlag, Stuttgart, German.
  • 9. Zhang, X.W., Gong, X.D. & Chen, F. (1999) Dynamics and stability analysis of the growth and astaxanthin production system of Haematococcus pluvialis. J. Industr. Microbiol. Biotechnol. 23(2), 133–137.
  • 10. Monod, J. (1979). The growth of bacteria cultures. Ann. Rev. Microbiol. 3, 371–393.
  • 11. Meyers, R.A. (1995). Molecular Biology and Biotechnology: A Comprehensive Desk Reference, Wiley-VCH.
  • 12. Yerushalmi, L. & Guiot, S.R. (1998). Kinetics of biodegradation of gasoline and its hydrocarbon constituents. Appl. Microbiol. Biotechnol. 49, 475–481.
  • 13. Goudar, C.T. & Strevett, K.A. (1998). Comparison of relative rates of BTEX biodegradation using respirometry. J. Ind. Microbiol. Biotechnol. 21, 11–18. DOI: 1367-5435/98/$12.00.
  • 14. Gödeke, S., Vogt, C. & Schirmer, M. (2008). Estimation of kinetic Monod parameters for anaerobic degradation of benzene in groundwater. Environ. Geology 55(2), 423–431. DOI: 10.1007/s00254-007-0988-z.
  • 15. Morlett-Chavez, J.A., Ascacio-Martinez, J.A., Rivas-Estilla, A.M., Velazquez-Vadillo, J.F., Haskins, W.E., Barrera-Saldana, H.A. & Acuna-Askar, K. (2010). Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. Intern. Biodeter. Biodegrad. 64, 581–587. DOI: 10.1016/j.ibiod.2010.06.010.
  • 16. Plaza, G.A., Wypych, J., Berry C. & Brigmon, R.L. (2007). Utilization of monocyclic aromatic hydrocarbons individually and in mixture by bacteria isolated from petroleum-contaminated soil. World J. Microbiol. Biotechnol. 23, 533–542. DOI: 10.1007/s11274-006-9256-8.
  • 17. Nagarajan, K. & Loh, K.C. (2015). Formulation of microbial cocktails for BTEX biodegradation. Biodegradation 26 (1), 51–63. DOI: 10.1007/s10532-014-9715-0.
  • 18. Sevillano, E., Gallego, L. & García-Lobo, L.V. (2009). First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. Pathologie Biologie 57, 493–495. DOI: 10.1016//j.patbio.2008.05.002.
  • 19. Tomaszewska, M. (2007). Industrial wastewater treatment by means of membrane techniques. Pol. J. Chem. Tech. 9(3), 138–142. DOI: 10.2478/v10026-007-0074-z.
  • 20. Kabsch-Korbutowicz, M., Wisniewski, J., Lakomska, S. & Urbanowska, A. (2011). Application of UF, NF and ED in natural organic matter removal from ion-exchange spent regenerant brine. Desalination 280(1–3), 428–431. DOI: 10.1016/j.desal.2011.06.068.
  • 21. Gryta, M., Markowska-Szczupak, A., Grzechulska-Damszel, J., Bastrzyk, J. & Waszak. M. (2014). The study of glycerol-based fermentation and broth downstream by nanofiltration. Pol. J. Chem. Tech. 16(4), 117–122. DOI: 10.2478/pjct-2014-0081.
  • 22. Grzechulska-Damszel, J. & Morawski, A. (2007). Removal of organic dye in the hybrid photocatalysis/membrane processes system. Pol. J. Chem. Tech. 9(2), 94–98. DOI: 10.2478/v10026-007-0036-5.
  • 23. Lobos-Moysa, E., Dudziak, M. & Zon, Z. (2009). Biodegradation of rapeseed oil by activated sludge method in the hybrid system. Desalination 241(1–3), 43–48. DOI: 10.1016/j.desal.00.0.028229.
  • 24. Trusek-Holownia, A. (2011). Efficiency of alcohols biodegradation in a membrane bioreactor. Deswater 33, 389–395. DOI: 10.5004/dwt.2011.2413.
  • 25. Garcia Galan, M.J., Diaz-Cruz, M.S. & Barcelo, D. (2012). Removal of sulfonamide antibiotics upon conventional activated sludge and advanced membrane bioreactor treatment. Anal. Bioanal. Chem. 404, 1505–1515. DOI: 10.1007/s00216-012-6239-5.
  • 26. Shim, H., Shim, E. & Yang, S.T. (2002). A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens Adv. Environ. Res. 7, 203–216. DOI: 10.1016/S1093-0191(01)00132-0.
  • 27. Trusek-Holownia, A. & Noworyta, A. (2012). Advanced treatment of wastewater with BTEX. Deswater 50, 440–445. DOI: 10.1080/19443994.2012.705089.
  • 28. Otenio, M.H., Lopes da Silva, M.T., Marques, M.L.O., Roseiro, J.C. & Bidoia E.D. (2005). Benzene, toluene and xylene biodegradation by Pseudomonas putida CCMI 852. Brazil. J. Microbiol. 36, 258–261.
  • 29. Di Martino, C., Lopez, N.I. & Iustman, L.J.R. (2012) Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. Intern. Biodeter. Biodegrad. 67, 15–20. DOI: 10.1016/j.ibiod.2011.11.004.
  • 30. Alvarez, P.J.J. & Vogel, T.M. (1995). Degradation of BTEX and their aerobic metabolites by indigenous microorganisms under nitrate reducing conditions. Wat. Sci. Technol. 31, 15–28.
  • 31. Marsolek, M.D., Kirisits, M.J. & Rittmann, B.E. (2007). Biodegradation of 2,4,5-trichlorophenol by aerobic microbial communities: biorecalcitrance, inhibition, and adaptation. Biodegradation 18, 351–358. DOI: 10.1007/s10532-006-9069-3.
  • 32. Song, Z., Edwards, S.R. & Burns, R.G. (2005) Biodegradation of naphthalene-2-sulfonic acid present in tannery wastewater by bacterial isolates Arthrobacter sp. 2AC and Comamonas sp. 4BC. Biodegradation 16, 237–252.
  • 33. Trusek-Holownia, A. & Noworyta, A. (2012). Biological regeneration of liquid sorbents after industrial purification of outlet gases. Chem. Process Eng. 33, 667–678. DOI: 10.2478/v10176-012-0056-4.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-673f51a7-20f9-4646-9ae4-47e30322f055
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.