Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
One of the possibilities when modelling a transport network is to use a graph with vertices and edges. They represent the nodes and arcs of such a network respectively. There are dozens of parameters or characteristics that we can describe in graphs, including the different types of domination number and the problems related to it. The main aim of this paper has been to show the possibilities of the application of the selected domination-oriented concepts to modelling and improving the transportation and/or logistics networks. Firstly, the basic description of domination in graph theory has been introduced. The edge-subdivision and bondage number notations and their implementations to the transportation network description and modelling were then proposed. Furthermore, the possible usage of distinguishing concepts in an exemplary academic transportation network has been shown. Finally, the conclusions and future directions of the work have been presented.
Rocznik
Tom
Strony
97--102
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Gdynia Maritime University, Faculty of Navigation, Department of Mathematics 81/83 Morska St., 81-225 Gdynia, Poland
Bibliografia
- 1. Bhattacharya, A. & Vijayakumar, G. R. (2002) Effect of edge-subdivision on vertex-domination in a graph. Discussiones Mathematicae Graph Theory 22, 2, pp. 335–347.
- 2. Blokus-Roszkowska, A. (2016) Reliability Analysis of the Bulk Cargo Loading System IncludingDependent Components. Proc. The International Conference of Numerical Analysis and Applied Mathematics – ICNAAM 2015, Symposium/Workshop on Safety of Critical Infrastructures, Rhodes, Greece, 2015, AIP Conf. Proc. 1738, T. Simos, Ch. Tsitouras (eds.), 1738A, 440006-5-440006-9.
- 3. Borkowski, P. (2017) The ship movement trajectory prediction algorithm using navigational data fusion. Sensors 17, 6 (1432), pp. 1–12.
- 4. Cascetta, E. (2001) Transportation Systems in Transportation Systems Engineering: Theory and Methods. E. Cascetta, Ed. Boston, MA: Springer US, pp. 1–22.
- 5. Commission of the European Communities (2006) Communication from the Commission on a European Programme for Critical Infrastructure Protection, Brussels.
- 6. Council Directive (2008) 2008/114/EC of 8 December 2008 on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection. Official Journal of the European Union L 345/75 (23.12.2008).
- 7. Fink, J.F., Jacobson, M.S., Kinch, L.F. & Roberts, J. (1990) The bondage number of graph, Discrete Mathematics 86, 1–3, pp. 47–57.
- 8. Gucma, L., Bąk, A., Sokołowska, S. & Hajduk, J. (2016) Stochastic model of ship traffic congestion in waterways applied to determine the influence of Liquefied Petroleum Gas tanker introduction on ship traffic on the Świnoujście– Szczecin waterway. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 45 (117), pp. 69–74.
- 9. Guze, S. (2009) Reliability analysis of multi-state ageing series-consecutive “m out of n: F” systems. Proc. European Safety and Reliability Conference – ESREL 2009, Prague, Vol. 3, pp. 1629–1635.
- 10. Guze, H. & Janczewska, J. (2015) Subcritical bifurcation of free elastic shell of biological cluster. Nonlinear Analysis: Real World Applications 24, pp. 61–72.
- 11. Guze, S., Neumann, T. & Wilczyński, P. (2017) Multi-Criteria Optimisation of Liquid Cargo Transport According to Lingustic Approach to the Route Selection Task. Polish Maritime Research 24(s1), pp. 89–96.
- 12. Guze, S., Smolarek, L. & Weintrit, A. (2016) The area-dynamic approach to the assessment of the risks of ship collision in the restricted water. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 45 (117), pp. 88–93.
- 13. Harrary, F. (1969) Graph Theory. Reading, MA: Addison-Wesley.
- 14. Hartnell, B.L. & Rall, D.F. (1994) Bounds on the bondage number of a graph. Discrete Mathematics 128, 1, pp. 173–177.
- 15. Haynes, T.W., Hedetniemi, S. & Slater, P. (1998) Fundamentals of Domination in Graphs. CRC Press.
- 16. Kołowrocki, K. (2004) Reliability of Large and Complex Systems. Amsterdam, Boston, Heidelberd, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sidney, Tokyo: Elsevier.
- 17. Kołowrocki, K. & Soszyńska-Budny, J. (2011) Reliability and Safety of Complex Technical Systems and Processes: Modeling – Identification – Prediction – Optimization. London, Dordrecht, Heildeberg, New York: Springer.
- 18. Ming‐Hua, L., Jung‐Fa, T. & Chian‐Son, Y. (2012) A Review of Deterministic Optimization Methods in Engineering and Management. Mathematical Problems in Engineering 2012.
- 19. Neumann, T. (2016) The Shortest Path Problem with Uncertain Information in Transport Networks. In: J. Mikulski, Ed. Challenge of Transport Telematics, Springer International Publishing.
- 20. Newell, G.F. (1980) Traffic flow on transportation networks. MIT Press Series in transportation studies, Monograph 5.
- 21. Pietrzykowski, Z., Wołejsza, P. & Borkowski, P. (2017) Decision Support in Collision Situations at Sea. Journal of Navigation 70, 3, pp. 447–464.
- 22. Rodrigue, J.P., Comtois, C. & Slack, B. (2017) The geography of transport systems (4th Edition), Routledge: Taylor & Francis Group.
- 23. Ruan, L., Du, H., Jia X., Wu, W., Li, Y. & Ko K.-I. (2004) A greedy approximation for minimum connected dominating sets. Theoretical Computer Science 329, 1–3, pp 325– 330.
- 24. Velammal, S. (1997) Studies in Graph Theory: Covering, Independence, Domination and Related Topics, Ph.D. Thesis, Manonmaniam Sundaranar University, Tirunelveli.
- 25. Venter, G. (2010) Review of Optimization Techniques. Encyclopedia of Aerospace Engineering. John Willey and Sons, Ltd.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-673e07a4-6ece-45eb-99d7-80c15581cc2f