
Scientific Journals 	 Zeszyty Naukowe
of the Maritime University of Szczecin	 Akademii Morskiej w Szczecinie

Zeszyty Naukowe Akademii Morskiej w Szczecinie 52 (124)	 97

2017, 52 (124), 97‒102 
ISSN 1733-8670 (Printed)	 Received: 	 23.10.2017 
ISSN 2392-0378 (Online)	 Accepted: 	 30.11.2017 
DOI: 10.17402/250	 Published:	 15.12.2017

An application of the selected graph theory domination 
concepts to transportation networks modelling

Sambor Guze
Gdynia Maritime University, Faculty of Navigation, Department of Mathematics 
81/83 Morska St., 81-225 Gdynia, Poland, e-mail: s.guze@wn.am.gdynia.pl

Key words: domination, edge-subdivision, connected bondage number, bondage-connected number, trans-
portation network, modelling

Abstract
One of the possibilities when modelling a transport network is to use a graph with vertices and edges. They 
represent the nodes and arcs of such a network respectively. There are dozens of parameters or characteristics 
that we can describe in graphs, including the different types of domination number and the problems related 
to it. The main aim of this paper has been to show the possibilities of the application of the selected dom-
ination-oriented concepts to modelling and improving the transportation and/or logistics networks. Firstly, 
the basic description of domination in graph theory has been introduced. The edge-subdivision and bondage 
number notations and their implementations to the transportation network description and modelling were then 
proposed. Furthermore, the possible usage of distinguishing concepts in an exemplary academic transportation 
network has been shown. Finally, the conclusions and future directions of the work have been presented.

Introduction

Transportation systems are the basis of today’s 
national and world economies. It is a major com-
ponent of each country’s Gross Domestic Product. 
Therefore, it is recognized in many countries as 
one of the critical infrastructures. In the European 
Union, it was first introduced in 2006 by the Euro-
pean Programme for Critical Infrastructure Protec-
tion (Commission of the European Communities, 
2006) and legally fixed by the Directive 2008/114/
EC in 2008 (Council Directive, 2008). According 
to (Cascetta, 2001), a transportation system can be 
defined as the combination of elements and their 
interactions, which produce the demand for travel 
within a given area, and the supply of transporta-
tion services to satisfy this demand. These items are 
means of transport, infrastructure, and people. The 
definition is general, but also flexible. It gives the 
possibility of specifying the structure by the prob-
lem that needs to be solved. The networks usually 
describe the transportation systems. The best and 

most natural way to represent them is with an anal-
ogy for their structure and flows (Newell, 1980; 
Rodrigue, Comtois & Slack, 2017).

Research on transportation systems relates to 
various aspects of their functionality. One of the 
main aspects is their safety and reliability problems. 
When the transport systems are considered as com-
plex technical systems, then the methods included 
in (Guze, 2009; Kołowrocki, 2004; Kołowrocki 
& Soszyńska-Budny, 2011; Blokus-Roszkowska, 
2016) can be used to analyze and model their safe-
ty and reliability. In case of two modes of transport, 
i.e., air and maritime transport, these aspects are of 
particular importance. There have been studies in 
stochastic congestion models for waterways (Gucma 
et al., 2016), traffic flows in transportation networks 
(Newell, 1980), and the development of new meth-
ods in ship movement prediction (Borkowski, 2017).

Nowadays, the decision support systems’ impor-
tance is growing. Some concepts and algorithms 
that are helpful for decision support in collision sit-
uations at sea have been presented in (Gucma et al., 
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2016; Guze, Smolarek & Weintrit, 2016; Borkow-
ski, 2017; Pietrzykowski, Wołejsza & Borkowski, 
2017).

The second aspect that is important for transpor-
tation systems is improvement and optimization. 
There have been many studies on methods for opti-
mization of transport systems due to different cri-
teria (Kołowrocki & Soszyńska-Budny, 2011). It is 
increasingly important to include not only a one-cri-
terion optimization, but two or three. The multi-cri-
teria optimization methods have been discussed in 
(Venter, 2010; Ming‐Hua, Jung‐Fa & Chian‐Son, 
2012), and examples of their applications were 
included in (Guze, Neumann & Wilczyński, 2017).

On the other hand, there are more advanced 
mathematical methods of nonlinear analysis, refer-
ring to biology, and they have been used to describe 
the safe operation of stratospheric balloons (Guze 
& Janczewska, 2015).

It can be difficult to use these methods depend-
ing on the difficulty of a considered problem. Thus, 
in such situations, it is possible to apply discrete 
methods like graph theory. An example of the use 
of the graph theory approach to analyse and model 
transport systems is the well-known problem of find-
ing the shortest path, which has been presented in 
(Newell, 1980; Venter, 2010; Neumann, 2016; Guze, 
Neumann & Wilczyński, 2017; Rodrigue, Comtois 
& Slack, 2017).

The main aim of this article has been the applica-
tion of the theory of domination, in graphs and relat-
ed concepts, to transportation networks analysis and 
modelling.

Graph theory topics review

This section contains the basic notations of graph 
theory, some definitions and parameters of domi-
nation and edge-subdivision terms based on results 
given in (Harrary, 1969; Hartnell & Rall, 1994; 
Haynes, Hedetniemi & Slater, 1998; Bhattacharya 
& Vijayakumar, 2002; Ruan et al., 2004).

Basic notations

In the whole article, we have considered the con-
nected, simple, undirected graph G = (V, E), where 
V is the set of vertices (nodes) and E is the set of 
edges (arcs). In other words, for a graph G, V(G) and 
E(G) respectively denote its vertex-set and the edge-
set. These assumptions are very important, because 
the connectivity of transport or logistics networks is 
fundamental to the functioning of these networks.

The set of all adjacent vertices to vertex v ∈ V 
in G is called the neighborhood and denoted by 
NG(v) or N(v). The close neighbourhood of this 
vertex is defined as v  ∈  V  ∪ {v} and denoted by 
NG[v]. The other basic parameter for the graphs 
is the degree of vertex v ∈ V, which is defined as 
the number of vertices in NG(v) and denoted by 
deg(v). The minimum and maximum degrees are 
defined as δ(G)  =  min{x  ∈  V:deg(x)} and ∆(G)  =  
max{x ∈ V:deg(x)}, respectively. Moreover, the set 
of all edges incident to the vertex v ∈ V is denoted 
by IG ∈ (v).

For any set A ⊆ V, the neighbourhood is given by 
N(A) = Uv∈AN(v). The induced subgraph defined on 
A is denoted by G[A].

Domination and bondage numbers in graphs

According to (Harrary, 1969; Haynes, Hedet-
niemi & Slater, 1998), the definitions of two domi-
nating sets and domination numbers have been intro-
duced in this subsection. 

Generally, a set D  ⊆  V(G) is a dominating 
set of graph G, if for any v  ∈  V either v  ∈  D or 
NG(v) ∩ D = ∅. While the minimum cardinality of 
a dominating set of graph G is called the domination 
number of G and denoted as γ (G). The example of 
a dominating set is presented in Figure 1.

Figure 1. Dominating set D = {1, 3} and domination number 
γ(G) = 2

Furthermore, a set DC  ⊆  V(G) is called a con-
nected dominating set of graph G, if every vertex of 
V \ DC is adjacent to a vertex in DC and the subgraph 
induced by DC is connected (see Figure 2). The min-
imum cardinality of a connected dominating set of 
graph G is called a connected domination number of 
G and denoted as γC (G).

The domination theory has various applications, 
and the analysis of communication networks is the 
one that has been most discussed in literature. Fink 
et al.  (Fink et al., 1990) examined a question con-
cerning the vulnerability of the communications 
network under link failure. They proposed the hypo-
thetical situation, where someone does not know 
which nodes in the network act as transmitters, but 
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does know that the set of such nodes can built a min-
imum dominating set in the related graph. Thus, 
they investigated the fewest number of commu-
nication links that must be severed so that at least 
one additional transmitter would be required so that 
communication with all sites would be possible. In 
this way, they introduced a new parameter called the 
bondage number of a graph. It is defined in the fol-
lowing way; The bondage number b(G) of nonempty 
graph G is the minimum cardinality among all sets 
of edges E for which γ (G – E) > γ (G) (Fink et al., 
1990; Hartnell & Rall, 1994). Thus, the bondage 
number of graph G describes the smallest number 
of edges whose removal from G results in a graph 
with a domination number larger than that of G (see 
Figure 3).

Figure 3. Graph with bondage number b(G) = 3 after remov-
ing dotted edges (1,4), (2,4), (3,4)

The exemplary graph considered in this sec-
tion has a bondage number equal to 3, because the 
removal of the three edges (dotted in Figure 3) is 
enough to increase the domination number.

Domination and edge-subdivision in graphs

Another, interesting concept in the theory of dom-
ination is edge-subdivision. It was introduced by S. 
Arumugam and S. Velammal (Velammal, 1997). 
This approach is based on the operation of subdivid-
ing graph G, which was defined in (Bhattacharya & 
Vijayakumar, 2002) in the following way.

Definition 1 (Bhattacharya & Vijayakumar, 2002). 
Let G be a graph and uv be an edge of G. By subdi-
viding the edge uv we mean forming a graph H from 
G by adding a new vertex w and replacing the edge 
uv by uw and wv. (Formally, V(H)  =  V(G)  ∪  {w} 

and E(H) = (E(G) – {uv}) ∪ {uw, wv}.) The graph 
obtained from G by subdividing each edge exactly 
once is denoted by S(G).

Moreover, this concept is used under the assump-
tion that the domination number of graph S(G), 
obtained from G by subdividing every edge exactly 
once is more than that of G, i.e. γ(S(G)) > γ(G) (Bhat-
tacharya & Vijayakumar, 2002). The parameter relat-
ed to subdividing is the subdivision number, defined 
as follows (Bhattacharya & Vijayakumar, 2002).

Definition 2 (Bhattacharya & Vijayakumar, 
2002). Let G be a graph with ∆(G) > 1. The smallest 
number that can be the cardinality of a set of edg-
es such that subdividing each of them exactly once 
results in a graph with a domination number of more 
than that of G, is called the subdivision number of G 
and is denoted by ξ(G).

The application of the subdivision number for the 
exemplary graph G has been presented in Figure 4.

Figure 4. Graph G with subdivision number ξ(G) = 2 and 
subdividing blue edges (1,4), (6,7)

The authors of (Bhattacharya & Vijayakumar, 
2002) showed that for any graph H obtained from 
G by subdividing some edges of G, the domination 
number of graphs G and H satisfy the inequality 
γ(H) ≥ γ(G). Furthermore, there are two proven the-
orems about the upper estimation of the subdivision 
number of graph G (Bhattacharya & Vijayakumar, 
2002). The first theorem gives the estimation relat-
ed to the domination number, where for a connected 
graph with at least 3 vertices, the subdivision num-
ber is estimated by (Bhattacharya & Vijayakumar, 
2002):
	 1)()(  GG   

 
	 (1)

In the second theorem, the upper estimation is 
dependent on the number of vertices, and for a con-
nected graph of large order n, the subdivision num-
ber’s estimation is given by (Bhattacharya & Vijay-
akumar, 2002):

	 5)ln(4)(  nnG  
 

	 (2)

Both approximations are helpful in finding the 
subdivision number.

Figure 2. Connected dominating set DC = {1,2} and connect-
ed domination number γC(G) = 2
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The problem of the minimum dominating set in 
the theory of complexity is NP-hard, i.e. there is no 
algorithm to find this set in polynomial time. In this 
way, finding the bondage number is NP-hard and 
the subdivision number is an NP-complete class of 
problems.

Implementations of domination-related 
concepts in transportation networks

The results presented in Section Introduction can 
be applied to the analysis and modelling of the trans-
portation networks. This section presents the most 
efficient way to do this. Moreover, the connected 
bondage number and the bondage-connected number 
are defined as the author’s new concepts in domina-
tion-related problems. Furthermore, the translation 
of the edge-subdividing concept to the transportation 
network analysis and modelling problem has been 
presented.

The theory of the bondage number introduced by 
Fink et al. (Fink et al., 1990) can be implemented 
to model transport networks, only after redefinition. 
All the algorithms used to find the bondage number 
(Fink et al., 1990; Hartnell & Rall, 1994) do not 
require connectivity of the graph after edge removal. 
It is an undesirable phenomenon in a transportation 
network. Thus, the author has proposed two new 
bondage numbers, i.e. a connected bondage num-
ber for the connected dominating set, and a bond-
age-connected number for the dominating set.

Firstly, the definition for the connected domina-
tion number has been proposed.

Definition 3. The connected bondage num-
ber bC(G) of nonempty graph G is the minimum 
cardinality among all sets of edges E for which 
γC (G – E) > γC (G).

The next definition has been introduced as the 
best way to apply the analysis and modelling to the 
transportation network.

Definition 4. The bondage-connected num-
ber bC  (G) of nonempty graph G is the minimum 
cardinality among all sets of edges E for which 
γ (G – E) > γ (G) and graph G – E is connected.

Both numbers can be used to approximate the 
vulnerability of a transportation network because 
of the temporary or permanent exclusion of a road 
or railway connection. The number defined in Defi-
nition 3 can be useful to answer the question about 
how many broken connections are needed to increase 
the number of nodes formed from the connected root 
of a transportation network by one. In the case of 
the number proposed in Definition 4, it gives the 

possibility of getting the solution to how many bro-
ken connections increase the number of production 
and storage centres by one. In this situation, it is not 
necessary that each production centre has a direct 
connection to each other.

Whereas, the results presented in Subsection 
Domination and edge-subdivision in graphs can be 
useful for redesigning the functioning transport or 
logistics network. This operation can be provoked 
by the necessity of serving more customers. The way 
of modelling by using the edge-subdividing method 
can help to select the proper connections to upgrade 
by adding new nodes. As we know according to the 
results, for graphs, i.e. networks, two approxima-
tions for the edge-subdivision number are given by 
(1) and (2). Both can be applied depending on the 
problem. According to this approach it is possible to 
state the question of how many new customers we 
need to grow the number of operation centres. From 
a mathematical point of view, how many subdivid-
ing operations need to be done, so that the domina-
tion number grows?

Applications

Let us consider the exemplary transportation net-
work with 12 nodes and arcs presented in Figure 5. 
We have taken into account two cases:

Case 1. The transportation network has fixed 
main nodes, which correspond to the dominating set 
in the represented graph.

Case 2. The transportation network can be 
designed by finding the main nodes, i.e. the minimal 
dominating set.

Figure 5. Exemplary transportation network

Case 1. The main nodes are selected and they form 
the dominating set D = {1,5,11}. At the same time, it 
is also the minimum cardinality of this set. Thus, the 
domination number is equal to 3 (see Figure 6).

If there is no possibility to change the main nodes, 
then both the bondage and bondage-connected 
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numbers are equal to 2, i.e. γ (G) = γC (G) = 2, and 
extension of the transportation network main nodes 
are as given in Figure 7. These numbers give the 
information about the vulnerability of the consid-
ered network to temporarily or permanently broken 
infrastructure.

Figure 7. The transportation network without two arcs  
(1,2) and (1,7)

Now we want to know how many new custom-
ers are needed to grow the transportation network. 
To answer the question, edge-subdividing can be 
applied. The exemplary results for the considered 
network are presented in Figure 8.

It has been shown, that only one additional cus-
tomer is needed to increase the domination number, 
i.e. the minimal dominating set. It satisfies the esti-
mation given in (1) and (2).

Case 2. The transportation network can be 
designed by finding the main nodes, i.e. the minimal 
dominating set.

The dominating set can be the same as the one 
presented in Figure 6, but it is only one of many pos-
sibilities, e.g. other D = {1,9,11}. These sets form 
the potential main nodes in the transportation net-
work without the assumption about the connectivity 
of the induced subgraph.

The most important question is about the vulner-
ability of the network represented by the graph in 

Figure 5 according to the bondage-connected num-
ber. For this network, this number is equal to 9 (see 
results in Figure 9).

Figure 9. Exemplary graph after reduction of 9 edges,  
bC (G) = 9, dominating set D = {2,5,6,12}

Next, similarly to case 1, the question is about 
the number of additional customers necessary to 
increase the number of main nodes to serve the ser-
vice. One of the possible solutions is given in Figure 
10 on the blue edges.

Figure 10. The transportation network edge-subdividing 
two arcs (4,9) and (8,11) and the dominating set {1,8, 9,11}

The graph in Figure 10 shows that one of the pos-
sible uses of the edge-subdividing operation can be 
done for edges (4,9) and (8,11).

Figure 8. The transportation network edge-subdividing one 
arc (4,9) to extend the dominating set to {1,5,9,11}

Figure 6. Dominating set for transportation network (empty 
circles)
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Conclusions

The paper has presented the possibilities for 
modelling a transport network with the graph theory 
approach using the domination parameters and the 
edge-subdivision concept.

First, a review of the literature on the methods 
of modelling and the optimization of technical and 
transport systems, with particular emphasis on mari-
time transport, was conducted.

Next, the basics of domination in graph theory 
were introduced. The domination number, bondage 
number, and the author’s new concepts of the con-
nected bondage number and the bondage-connected 
number have been proposed. The edge-subdivision 
methods for vertex-domination in graphs have been 
described and implemented for the transportation 
and logistics networks.

Finally, the application of the previously men-
tioned and defined methods has been presented as 
used on the exemplary transportation network in two 
cases.

The presented methods are universal and helpful 
in modelling every type of network, not only trans-
portation networks. Future research will be con-
cerned with the possibility of using the discussed 
methods to optimize transport networks.
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