PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of starting modes of single-phase induction motors when changing the parameters of the stator windings, phase-shifting capacitor and supply voltage

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie trybów rozruchu jednofazowych silników asynchronicznych przy zmianie parametrów uzwojeń stojana, kondensatora przesuwającego fazę i napięcia zasilania
Języki publikacji
EN
Abstrakty
EN
Single-phase induction motors (SPIM) are widely used in household appliances, agriculture, trade, medicine and other areas where a cheap unregulated electric drive powered by a single-phase AC network is required. They are produced in millions of pieces per year. Therefore, significant attention has always been paid to research aimed at reducing resource consumption in the production and operation of these engines, improving the initial characteristics and increasing their competitiveness. The article conducted a study of the starting torque when starting single-phase induction motors depending on the initial phase of the voltage of the single-phase network supplying the stator winding, on the phase angles of the network voltage at fixed phase angles of the starting winding. It is also analysed how the active resistance and inductive leakage resistance of the stator winding and the equivalent rotor winding, and the resistance of the capacitor capacitance affect the starting characteristics of the engine.
PL
Jednofazowe silniki asynchroniczne znajdują szerokie zastosowanie w sprzęcie AGD, rolnictwie, handlu, medycynie i innych dziedzinach, gdzie wymagany jest tani nieregulowany napęd elektryczny zasilany z jednofazowej sieci prądu przemiennego. Produkowane są w milionach sztuk rocznie. Dlatego zawsze dużą wagę przywiązywano do badań mających na celu zmniejszenie zużycia zasobów w produkcji i eksploatacji tych silników, poprawę parametrów wyjściowych i zwiększenie ich konkurencyjności. W artykule przeprowadzono badania momentu rozruchowego przy rozruchu jednofazowych silników asynchronicznych w zależności od fazy początkowej napięcia sieci jednofazowej zasilającej uzwojenie stojana, od kątów fazowych napięcia sieciowego przy ustalonych kątach fazowych rozruchu. meandrowy. Analizowano także wpływ rezystancji czynnej i indukcyjnej rezystancji uzwojenia stojana i zastępczego uzwojenia wirnika oraz rezystancji pojemności kondensatora na charakterystykę rozruchową silnika.
Rocznik
Strony
31--41
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
  • Al-Balqa Applied University, Department of Technical Science, Al Salt, Jordan
  • Al-Balqa Applied University, Department of Mechanical Engineering, Al Salt, Jordan
  • Al-Balqa Applied University, Department of Electrical and Electronics Engineering, Al Salt, Jordan
  • Al-Balqa Applied University, Department of Electrical and Electronics Engineering, Al Salt, Jordan
  • O. M. Beketov National University of Urban Economy in Kharkiv, Department of Alternative Energy, Kharkiv, Ukraine
  • National Technical University "Kharkiv Polytechnic Institute", Department of Heat Engineerine and Energy-efficient Technologies, Kharkiv, Ukraine
  • National Technical University "Kharkiv Polytechnic Institute", Department of Heat Engineerine and Energy-efficient Technologies, Kharkiv, Ukraine
  • National Technical University "Kharkiv Polytechnic Institute", Department of Electrical Energy Transmission, Kharkiv, Ukraine
  • State Biotechnological University, Department of Electricity Supply and Energy Management, Kharkiv, Ukraine
autor
  • Cyclone Manufacturing Inc, Mississauga, Ontario, Canada
Bibliografia
  • [1] Al-Rawashdeh A. et al.: The tooth factor effect on the harmonics of large electrical machines. Bulletin of Electrical Engineering and Informatics 9(4), 2020, 1677–1684. [https://doi.org/10.11591/eei.v9i4.1565].
  • [2] Bianchi N.: Electrical machine analysis using finite elements. CRC press. 2017, [https://doi.org/10.1201/9781315219295].
  • [3] Chasiotis I. D., Karnavas Y. L.: A novel design methodology for the compliance of single-phase induction motors with recent industrial premium efficiency standards. Engineering Reports 2(11), 2020 [https://doi.org/10.1002/eng2.12265].
  • [4] Chasiotis I. D., Karnavas Y. L., Scuiller F.: Effect of rotor bars shape on the single-phase induction motors performance: An analysis toward their efficiency improvement. Energies 15(3), 2022, 717 [https://doi.org/10.3390/en15030717]
  • [5] Cheng M., Han P., Hua W.: General airgap field modulation theory for electrical machines IEEE Transactions on Industrial Electronics 64(8), 2017, 6063–6074 [https://doi.org/10.1109/TIE.2017.2682792].
  • [6] da Silva L. E. B. et al.: Differential evolution-based air-gap torque method approach for induction motor efficiency estimation. 18th International Conference on Intelligent System Application to Power Systems (ISAP), 2015 [https://doi.org/10.1109/ISAP.2015.7325521].
  • [7] Dmitriy S., Vladimir P.: Short review of development approaches of mathematical models for induction motor nonsymmetrical modes research. XVIII International Scientific Technical Conference Alternating Current Electric Drives – ACED, 2021, 1–5 [https://doi.org/10.1109/ACED50605.2021.9462311].
  • [8] Finkelshtein V. et al.: The analytic-field method for calculating the squirrel-cage induction motor parameters. Scientific Bulletin of National Mining University 3, 2020 [https://doi.org/10.33271/nvngu/2020-3/067].
  • [9] Goolak S. et al.: Determination of parameters of induction electric machines with asymmetrical windings of electric locomotives. Communications-Scientific letters of the University of Zilina 21(2), 2019, 24–31 [https://doi.org/10.26552/com.C.2019.2.24-31].
  • [10] Gritli Y. et al.: A diagnostic space vector-based index for rotor electrical fault detection in wound-rotor induction machines under speed transient. IEEE Transactions on Industrial Electronics 64(5), 2017, 3892–3902 [https://doi.org/10.1109/TIE.2017.2652389].
  • [11] Guedes J. J. et al.: Parameters estimation of three-phase induction motors using differential evolution. Electric Power Systems Research 154, 2018, 204–212 [https://doi.org/10.1016/j.epsr.2017.08.033].
  • [12] Goolak S., Gubarevych O., Yermolenko E.: Mathematical modeling of an induction motor for vehicles. Eastern-European Journal of Enterprise Technologies 2(2), 2020 [https://doi.org/10.15587/1729-4061.2020.199559].
  • [13] Havrylenko Y. et al.: Representation of a Monotone Curve by a Contour with Regular Change in Curvature. Entropy 23, 2021, 923 [https://doi.org/10.3390/e23070923].
  • [14] Iegorov O. et al.: Single-phase induction motors winding parameters optimization with maximum efficiency. IEEE Problems of Automated Electrodrive. Theory and Practice (PAEP), 2020, 1–4 [https://doi.org/10.1109/PAEP49887.2020.9240878].
  • [15] Iegorov O. et al.: The Single-Phase Induction Motor Windings Parameters Experimental Optimization at a Given Capacity of the Phase-Shifting Capacitor. IEEE International Conference on Modern Electrical and Energy Systems (MEES), 2021, 1–4 [https://doi.org/10.1109/MEES52427.2021.9598620].
  • [16] Iegorov O., Iegorova O., Miroshnyk O., Cherniuk A.: A calculated determination and experimental refinement of the optimal value of the singlephase induction motor transformation ratio. Energetika 67(1-2), 2021 [https://doi.org/10.6001/energetika.v67i1.4483].
  • [17] Iegorov O., Iegorova O., Miroshnyk O., Savchenko, O.: Improving the accuracy of determining the parameters of induction motors in transient starting modes. Energetika 66(1), 2020 [https://doi.org/10.6001/energetika.v66i1.4295].
  • [18] Karaiev O. et al.: Mathematical modelling of the fruit-stone culture seeds calibration process using flat sieves. Acta Technologica Agriculturae 24(3), 2021, 119–123 [https://doi.org/10.2478/ata-2021-0020].
  • [19] Khasawneh A. et al.: Optimal Determination Method of the Transposition Steps of An Extra-High Voltage Power Transmission Line. Energies 14, 2021, 6791 [https://doi.org/10.3390/en14206791].
  • [20] Komada P. et al.: The incentive scheme for maintaining or improving power supply quality. Przegląd Elektrotechniczny 5, 2019, 79–82 [https://doi.org/10.15199/48.2019.05.20].
  • [21] Koti H. N. et al.: On shortening the numerical transient in time-stepping finite element analysis of induction motors: Method implementation. IEEE International Electric Machines & Drives Conference – IEMDC, 2019, 1157–1162 [https://doi.org/10.1109/IEMDC.2019.8785306].
  • [22] Lezhenkin O. et al.: Investigation of the separation of combed heap of winter wheat. Journal of Physics: Conference Series 1781, 2020, 012016 [https://doi.org/10.1088/1742-6596/1781/1/012016].
  • [23] Malozyomov B. V., Martyushev N. V., Sorokova S. N.: Mathematical Modeling of Mechanical Forces and Power Balance in Electromechanical Energy Converter. Mathematics 11(10), 2023 [https://doi.org/10.3390/math11102394].
  • [24] Mademlis C., Kioskeridis I., Theodoulidis T. Optimization of single-phase induction Motors-part I: maximum energy efficiency control. IEEE Transactions on Energy conversion 20(1), 2005, 187–195 [https://doi.org/10.1109/TEC.2004.842386].
  • [25] Mousavi M. S. et al.: Integral sliding mode observer-based ultralocal model for finite-set model predictive current control of induction motor. Journal of Emerging and Selected Topics in Power Electronics 10(3), 2021, 2912–2922 [https://doi.org/10.1109/JESTPE.2021.3110797].
  • [26] Neyman V. Y., Markov A. V.: Model of electromechanical energy converter with variable inductance. 20th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM), 2019, 765–769 [https://doi.org/10.1109/EDM.2019.8823171].
  • [27] Qawaqzeh M.Z. et al.: Research of Emergency Modes of Wind Power Plants Using Computer Simulation. Energies 14, 2021, 4780 [https://doi.org/10.3390/en14164780].
  • [28] Redinz J. A.: The induction motor. European Journal of Physics 36(5), 2015 [https://doi.org/10.1088/0143-0807/36/5/055008].
  • [29] Sarac V., Atanasova-Pacemska T.: Multiparameter analysis for efficiency improvement of single-phase capacitor motor. Mathematical Problems in Engineering 2019. [https://doi.org/10.1155/2019/5131696].
  • [30] Sarac V., Trajchevski N.: Impact of capacitor on operating characteristics of single-phase motor. 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), 2019, 1–5 [https://doi.org/10.1109/ELMA.2019.8771599].
  • [31] Slunjski M. et al.: Symmetrical/asymmetrical winding reconfiguration in multiphase machines. IEEE Access 8, 2020. 12835–12844 [https://doi.org/10.1109/ACCESS.2020.2965652].
  • [32] Vukosavic S. N.: Electrical machines. Springer Science & Business Media, 2012 [https://doi.org/10.1007/978-1-4614-0400-2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67396e66-395a-4289-8a77-5383b4c818a5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.