PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and characteristics of polyurethane-based composites reinforced with bioactive ceramics

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of the study was to synthesize and characterize a series of porous polyurethane-based composites modified with β-tricalcium phosphate (TCP) and hydroxyapatite (HAp). The composites were obtained by the one-step bulk polyaddition method using poly(ethylene glycol) (PEG) as a soft segment, 4,4’-diphenylmethane diisocyanate (MDI), 1,4-butanediol (BDO) as a chain extender and selected bioactive bioceramics. The obtained composites were characterized using FTIR, DSC, TG and SEM/EDX methods. Moreover, in vitro chemical stability and wettability tests were performed. The preliminary assessment of mechanical properties, porosity and in vitro chemical stability was performed. The test results showed that the best pore distributions, as well as Young’s modulus, were found for the hydroxyapatite--modified composites and PU/20% TCP. The wettability investigations revealed that the contact angle of PU composites was in the range 50-80°, which indicates the hydrophobic nature of the materials. The in vitro biostability studies confirmed that all tested compo-sites were chemically stable during incubation in the simulated body fluid. By using infrared spectroscopy the presence of urethane bonds and completion of reaction were evidenced. The results showed that the bioactivity of the materials was improved, which makes good perspectives for the obtained materials to be considered as potential scaffolds in bone tissue regeneration.
Słowa kluczowe
Rocznik
Strony
22--29
Opis fizyczny
Bibliogr. 15 poz., tab., wykr., zdj.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • [1] B. Świeczko-Żurek, A. Zieliński, i in.: Skrypt do przedmiotu biomateriały (2011).
  • [2] C. Turner and D. Burr: Experimental Techniques for Bone Mechanics, in Bone Mechanics Handbook, Second Edition, CRC Press (2001) 2-6.
  • [3] K.T. Łysiak-Drwal, Dominiak M., Malicka B.: Estimation of the influence of bone defects’ dimensions on the healing outcome – 1-year observations. Stomatology 63 (2010) 365-376.
  • [4] B. Świeczko-Żurek: Biomateriały. Gdańsk (2009).
  • [5] L.P. Gabriel et al.: Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. Nanomedicine Nanotechnology, Biology and Medicine 13 (2017) 201-208.
  • [6] J.L. Ryszkowska, M. Auguścik, A. Sheikh, A.R. Boccaccini: Biodegradable polyurethane composite scaffolds containing Bioglass® for bone tissue engineering. Composite Science and Technology 70 (2010) 1894-1908.
  • [7] I. Dulińska-Molak, M. Lekka, K.J. Kurzydłowski: Surface properties of polyurethane composites for biomedical applications. Applied Surface Science 270 (2013) 553-560.
  • [8] B. Das et al.: Bio-functionalized MWCNT/hyperbranched polyurethane bionanocomposite for bone regeneration. Biomedical Materials 10 (2015) 1-16.
  • [9] J. Chlopek, P. Rosół, A. Morawska-Chochół: Durability of polymer-ceramics composite implants determined in creep tests. Composite Science and Technology 66 (2006) 1615-1622.
  • [10] K. Pielichowska: The influence of molecular weight on the properties of polyacetal/hydroxyapatite nanocomposites. Part 2. In vitro assessment. Journal of Polymer Research 19 (2012) 9788–1–9778–10.
  • [11] V. Shim and J. Boheme: Use of Polyurethane Foam in Orthopaedic Biomechanical Experimentation and Simulation (2012).
  • [12] A.R. Fariza, A. Zuraida, I. Sopyan: Application of Low Cost Polyurethane (PU) Foam for Fabricating Porous Tri-Calcium Phosphate (TCP). Journal of Biomimetics, Biomaterials, and Tissue Engineering 8 (2010) 1-7.
  • [13] P. Szczepańczyk, K. Pietryga, K. Pielichowska, J. Chłopek: Porous composites polyurethane/ß-TCP for orthopaedic applications. Engineering of Biomaterials 121 (2013) 33-41.
  • [14] M. Berdychowski: Zastosowanie modeli porowatych biomateriałów w procesach projektowania i symulacji (2014).
  • [15] T. Kokubo, H. Takadama: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (2006) 2907-2915.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67288c50-fbdd-4d05-8926-305cbd945f37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.