PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation and Factor Decomposition of Carbon Emissions in China’s Tourism Sector

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Szacowanie poziomu emisji i czynników rozkładu dwutlenku węgla w chińskim sektorze turystycznym
Języki publikacji
EN
Abstrakty
EN
Based on data from 2000-2015, this study estimated the carbon emissions of China’s tourism-related traffic, accommodation, and tourism activities. To quantify the factors governing tourism carbon emissions, this study employed the logarithmic mean Divisia index (LMDI). Furthermore, simultaneous equations models were applied to determine the impact of tourism volume, economic growth, and technological progress on tourism-related carbon emissions. The results showed that carbon emissions are continuously increasing, with tourism-related traffic being the main contributor to total carbon emissions in the tourism sector and private cars being the major source of traffic-related carbon emissions. LMDI and simultaneous equations analysis revealed that tourism volume was the main driving force behind the increase in tourism-related carbon emissions, whereas energy intensity and structure effects were less significant factors influencing the growth rate of carbon emissions in China’s tourism sector.
PL
Na podstawie danych z lat 2000-2015 w tym artykule oszacowane emisje węglowe związane z turystyką: ruch drogowy, zakwaterowanie i aktywność turystyczną. Aby określić ilościowo czynniki odpowiedzialne za związane z turystyką emisje węglowe użyto logarytmiczny Divisia index (LMDI). Następnie zastosowano modele symultanicznych równań, aby określić wpływ poziomu ruchu turystycznego, wzrost ekonomiczny i postęp techniczny na związane z turystyką emisje węglowe. Otrzymane rezultaty pokazuję, że poziom emisji węglowych nieustannie się zwiększa, przy czym głównym czynnikiem jest turystyczny ruch samochodowy, w szczególności samochodów prywatnych. LMDI i symultaniczne równania potwierdziły, że poziom ruchu turystycznego był głównym motorem odpowiedzialnym za wzrost związanych z turystyką emisji węglowych, natomiast energochłonność i czynniki strukturalne odgrywają mniejszą rolę we wzroście emisji węgla z chińskiej turystyki.
Czasopismo
Rocznik
Strony
91--101
Opis fizyczny
Bibliogr. 50 poz., tab.
Twórcy
  • School of Public Finance and Taxation, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, PR China
autor
  • Business School, University of Shanghai for Science and Technology, Shanghai 200093, PR China
autor
  • School of Public Finance and Taxation, Southwestern University of Finance and Economics, Chengdu, Sichuan 611130, PR China
autor
  • School of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, Anhui 233030, PR China
  • Lithuanian Institute of Agrarian Economics, Kudirkos Str. 18-2, LT-03105 Vilnius, Lithuania
  • Lithuanian Institute of Agrarian Economics, Kudirkos Str. 18-2, LT-03105 Vilnius, Lithuania
Bibliografia
  • 1. ANDREWS-SPEED P., LINDE C., KERAMIDAS K., 2014, Conflict and cooperation over access to energy: Implications for a low-carbon future, in: Futures, vol. 58, no. 2, p. 103-114.
  • 2. ANG B.W., SU B., 2016, Carbon emission intensity in electricity production: A global analysis, in: Energy Policy, vol. 94, p. 56-63.
  • 3. BECKEN S., FRAMPTON C., SIMMONS D., 2001, Energy consumption patterns in the accommodation sector – the New Zealand case, in: Ecological Economics, vol. 39, no. 3, p. 371-386.
  • 4. BECKEN S., SIMMONS D.G., FRAMPTON C., 2003, Energy use associated with different travel choices, in: Tourism Management, vol. 24, no. 3, p. 267-277.
  • 5. EHRLICH P.R., HOLDREN J.P., 1971, Impact of population growth, in: Science, vol. 171, no. 3977, p.1212-1217.
  • 6. FANG G., TIAN L., FU M., SUN M., 2014, Government control or low carbon lifestyle? –Analysis and application of a novel selective-constrained energy-saving and emission-reduction dynamic evolution system, in: Energy Policy, vol.68, no. 2, p.498-507.
  • 7. FLOROS N., VLACHOU A., 2005, Energy demand and energy related CO2 emissions in Greek manufacturing: Assessing the impact of a carbon tax, in: Energy Economics, vol.27, no. 3, p. 387-413.
  • 8. GERLAND, P., RAFTERY, A. E., ŠEVČÍKOVÁ, H., LI, N., GU, D., SPOORENBERG, T., ALKEMA, L., FOSDICK, B. K., CHUNN, J., LALIC, N., BAY, G.., BUETTNER, T., HEILIG, G. K., WILMOTH, J. 2014, World population stabilization unlikely this century, in: Science, vol. 346, no. 6206, p. 234-237.
  • 9. GÖSSLING S., 2002, Global environmental consequences of tourism, in: Global Environmental Change, vol. 12, no. 4, p. 283-302.
  • 10. GÖSSLING S., BUCKLEY R., 2016, Carbon labels in tourism: persuasive communication? In: Journal of Cleaner Production, vol. 111, p. 358-369.
  • 11. GÖSSLING S., PEETERS P., 2015, Assessing tourism’s global environmental impact 1900-2050, in: Journal of Sustainable Tourism, vol. 23, no. 5, p. 639-659.
  • 12. GÖSSLING S., SCOTT D., HALL C.M., 2015, Inter-market variability in CO2 emission-intensities in tourism: Implications for destination marketing and carbon management, in: Tourism Management, vol. 46, p. 203-212.
  • 13. HANSON C., HENDRICKS JR, 2006, Taxing carbon to finance tax reform, New York, World Resources Institute.
  • 14. IPCC, 2006, IPCC Guidelines for National Greenhouse Gas Inventories, Japan, Institute for Global Environmental Strategies (IGES).
  • 15. KAYA Y., 1989, Impact of carbon dioxide emission on GNP growth: Interpretation of proposed scenarios, Presentation to the energy and industry subgroup, Response Strategies Working Group, IPCC.
  • 16. KUO N., CHEN P., 2009, Quantifying energy use, carbon dioxide emission, and other environmental loads from island tourism based on a life cycle assessment approach, in: Journal of Cleaner Production, vol.17, no. 15, p. 1324-1330.
  • 17. LEE J.M., BRAHMASRENE T., 2013, Investigating the influence of tourism on economic growth and carbon emissions: Evidence from panel analysis of the European Union, in: Tourism Management, vol. 38, no. 13, p. 69-76.
  • 18. LENZEN M., 1999, Total requirements of energy and greenhouse gases for Australian transport, in: Transportation Research, vol. 4, no. 4, p. 265-290.
  • 19. LINA B., LONG H., 2016, Emissions reduction in China’s chemical industry – Based on LMDI, in: Renewable & Sustainable Energy Reviews, vol. 53, p. 1348-1355.
  • 20. LIU J., FENG T., YANG X., 2011, The energy requirements and carbon dioxide emissions of tourism industry of Western China: A case of Chengdu city, in: Renewable and Sustainable Energy Reviews, vol. 15, no. 6, p. 2887-2894.
  • 21. MENG W., XU L., HU B., ZHOU J., WANG Z, 2016, Quantifying direct and indirect carbon dioxide emissions of the Chinese tourism industry, in: Journal of Cleaner Production, vol. 126, p. 586-594.
  • 22. PEETERS P., DUBOIS G., 2010, Tourism travel under climate change mitigation constraints, in: Journal of Transport Geography, vol. 18, no. 3, p. 447-457.
  • 23. PEETERS P., HIGHAM J., KUTZNER D., COHEN S., GÖSSLING S., 2016, Are technology myths stalling aviation climate policy?, in: Transportation Research, vol. 44, p. 30-42.
  • 24. PENG H., ZHANG J., LU L., TANG G., YAN B., XIAO X., HAN Y., 2017, Eco-efficiency and its determinants at a tourism destination: A case study of Huangshan National Park, China, in: Tourism Management, vol. 60, p. 201-211.
  • 25. PERCH-NIELSEN S., SESARTIC A., STU-CKI M., 2010, The greenhouse gas intensity of the tourism sector: The case of Switzerland, in: Environmental Science & Policy, vol. 13, no. 2, p. 131-140.
  • 26. PIERI S.P., ATHANASIOS S., IOANNIS T., 2016, Reduce tourist carbon footprint through strategic mapping of the existing hotel stock-Attica, in: International Journal of sustainable Energy, vol. 35, p. 734-745.
  • 27. ROBAINA-ALVES M., MOUTINHO V., COSTA R., 2016, Change in energy-related CO2 (carbon dioxide) emissions in Portuguese tourism: a decomposition analysis from 2000 to 2008, in: Journal of Cleaner Production, vol. 111, p. 520-528.
  • 28. ROECKNER E., GIORGETTA M.A., CRUEGER T., ESCH M., PONGRATZ J., 2011, Historical and future anthropogenic emission pathways derived from coupled climate-carbon cycle simulations, in: Climatic Change, vol. 105, no. 1, p. 91-108.
  • 29. SCHAFER A., VICTOR D.G., 1999, Global passenger travel: Implications for carbon dioxide emissions, in: Energy, vol. 24, no. 8, p. 657-679.
  • 30. SCOTT D., GÖSSLING S., HALL C.M., PEETERS P., 2016a, Can tourism be part of the decarbonized global economy? The costs and risks of alternate carbon reduction policy pathways, in: Journal of Sustainable Tourism, vol. 24, no. 1, p. 52-72.
  • 31. SCOTT D., HALL C.M., GÖSSLING S., 2016b, A report on the Paris Climate Change Agreement and its implications for tourism: why we will always have Paris?, in: Journal of Sustainable Tourism, vol. 24, no. 7, p. 933-948.
  • 32. SUN Y., 2014, A framework to account for the tourism carbon footprint at island destination, in: Tourism Management, vol. 45, p. 16-27.
  • 33. SUN Y., 2016, Decomposition of tourism greenhouse gas emissions: Revealing the dynamics between tourism economic growth, technological efficiency, and carbon emissions, in: Tourism Management, vol. 55, p. 326-336.
  • 34. TAO Y., HUANG Z., 2014, Review of accounting for carbon dioxide emissions from tourism at different spatial scales, in: Acta Ecologica Sinica, vol. 34, no. 5, p. 246-254.
  • 35. TAPIO P., 2005, Towards a theory of decoupling: Degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001, in: Transport Policy, vol. 12, no. 12, p. 137-151.
  • 36. TAPIO P., BANISTER D., LUUKKANEN J., VEHMAS J., WILLAMO R., 2007, Energy and transport in comparison: Immaterialisation, dematerialisation and decarbonisation in the EU15 between 1970 and 2000, in: Energy Policy, vol. 35, no. 1, p. 433-451.
  • 37. UNWTO, 2014, International tourism exceeds expectations with arrivals up by 52 million in 2013, http://media.unwto.org/press-release/2014-01-20/in ternational-tourism-exceeds-expectations-arrivals-52-million-2013/(02.20.2017).
  • 38. UNWTO, 2016a, International tourist arrivals up 4% in the first half of 2016, http://media.unwto. org/press-release/2016-09-26/international-tourist-arrivals-4-first-half-2016/(02.20.2017).
  • 39. UNWTO, 2016b, International tourist arrivals up 4% reach a record 1.2 billion in 2015, http://media.unwto.org/press-release/2016-01-18/internation al-tourist-arrivals-4-reach-record-12-billion-2015/ (02.20.2017).
  • 40. WALIGO M.V., CLARKE J., HAWKINS R., 2013, Implementing sustainable tourism: A multi-stakeholder involvement management framework, in: Tourism Management, vol. 36, no. 3, p. 342-353.
  • 41. WTTC, 2015, Travel & tourism 2015 connecting global climate action, http://www.wttc.org/-/media/files/reports/policy-research/tt-2015--connectin g-global-climate-action-a4-28pp-web.pdf (02.20.2017)
  • 42. WTTC, 2016, Travel & tourism economic impact 2016 world, http://www.wttc.org/-/media/files/reports/economic-impact-research/regions-2016/worl d2016.pdf (02.20.2017).
  • 43. WU P., HAN Y., TIAN M., 2015, The measurement and comparative study of carbon dioxide emissions from tourism in typical provinces in China, in: Acta Ecologica Sinica, vol. 35, no. 6, p. 184-190.
  • 44. WU P., Shi P., 2011, An estimation of energy consumption and CO2 emissions in tourism sector of China, in: Journal of Geographical Sciences, vol. 21, no. 4, p. 733-745.
  • 45. XU J., YAO L., MO L., 2011, Simulation of low-carbon tourism in world natural and cultural heritage areas: An application to Shizhong District of Leshan City in China, in: Energy Policy, vol. 39, no. 7, p. 4298-4307.
  • 46. XU X., REED M., 2017, Perceived pollution and inbound tourism in China, in: Tourism Management Perspectives, vol. 21, p. 109-112.
  • 47. YIU L., SANER R., FILADORO M., 2013, Mainstream tourism development in the least developed countries: coherence & complimentarity of policy instruments, http://www.csend.org/publications/cse nd -policy-briefs/briefs (02.20.2017).
  • 48. YUAN J., XU Y., HU Z., ZHAO C., XIONG M., GUO J., 2014, Peak energy consumption and CO2 emissions in China, in: Energy Policy, vol. 68, no. 2, p. 508-523.
  • 49. ZHANG W., LI K., ZHOU D., ZHANG W., GAO H., 2016, Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method, in: Energy Policy, vol. 92, p. 369-381.
  • 50. ZHANG Z.X., 2000, Decoupling China’s carbon emissions increase from economic growth: An economic analysis and policy implications, in: World Development, vol. 28, no. 4, p. 739-752.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-671e301c-8f09-433a-a8ba-ab76a2b30fbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.