PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of polymeric binders to agglomerate oxidized copper ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Permeability reduction is a major challenge in heap leaching, primarily caused by the accumulation of fines that move with the leaching agent, leading to the formation of dead zones and channeling within the heap. In the Aria copper beneficiation plant, the 0-2 mm fraction with a copper grade of 1.4% undergoes pre-separation prior to heap loading without further processing. This study investigated the potential of using the agglomeration method to improve permeability in the case of using the 0-2 mm fraction of ore. Mineral compounds, such as sodium silicate and calcium sulfate, and non-ionic, cationic, and anionic polymer compounds, were used in the agglomeration process. The strength of interparticle bonding was evaluated by measuring the fine migration percentage (FMP) in the soak test. The results revealed that agglomerates produced using non-ionic compounds had the highest bonding strength, with an FMP of 3.89%, the lowest of all the compounds tested. This enhanced bonding strength was attributed to the combined influence of hydrogen bonding forces and van der Waals forces.
Rocznik
Strony
art. no. 176682
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr.
Twórcy
autor
  • Enter engineering company, Tashkent, Uzbekistan
  • Mining engineering faculty, Amirkabir University of Technology, Tehran, Iran
Bibliografia
  • BENNETT, C.R., MCBRIDE, D., CROSS, M., GEBHARDT, J.E., TAYLOR, D.A., 2006, Simulation technology to support base metal ore heap leaching. Mineral Processing and Extractive Metallurgy, 115, 41-48.
  • BOUFFARD, S.C., 2008, Agglomeration for heap leaching: Equipment design, agglomerate quality control, and impact on the heap leach process. Minerals Engineering, 21, 1115-1125.
  • BROWN, L., BANCROFT, K., RHEAD, M., 1980, Laboratory studies on the adsorption of acrylamide monomer by sludge, sediments, clays, peat and synthetic resins. Water Res. 14, 779–781.
  • CHAMBERLIN, P.D., 1980, Heap leaching and pilot testing of gold and silver ore. Precious Metals Symposium, Sparks, Nevada, 77–83.
  • CHAMBERLIN, P.D., 1986, Agglomeration: cheap insurance for good recovery when heap leaching gold and silver ores. Journal of Mining Engineering, 38, 1105–1109.
  • CHEN, K., YIN, W., MA, Y., YANG, B., SUN, H., RAO, F., LIU, J., 2021, Microstructure analysis of low-grade copper ore agglomerates prepared by geopolymerization. Hydrometallurgy, 200, 1-9.
  • CHEN, K., YIN, W., RAO, F., WU, J., ZHU, Z., TANG, Y., 2020, Agglomeration of fine-sized copper ore in heap leaching through geopolymerization process. Minerals Engineering, 159, 106649.
  • CHEN. K., YIN, W., YANG, B., 2022, Effect of the Properties of Agglomerates Prepared by Geopolymerization on Column Bioleaching. Non-ferrous Metals, 63, 573–581.
  • CHENG, L., LEICHANG, C., PENG, M., JIENI, W., SHAOFENG, R., SHENG, H., 2016, A novel one-step flocculation method for recycling wasterolling oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38, 2043-2049.
  • DHAWAN, N., SAFARZADEH, M.S., MILLER, J.D., MOATS, M.S., RAJAMANI R.K. 2013, Crushed ore agglomeration and its control for heap leach operations. Journal of Minerals Engineering, 41, 53-70.
  • GHORBANI, Y., FRANZIDIS, J.P., JOCHEN, P., 2016, Heap Leaching Technology-Current State, Innovations, and Future Directions: A Review. Mineral Processing and Extractive Metallurgy Review, 37, 73-119.
  • GOLPAYEGANI, M.H., ABDOLLAHZADEH, A.A., 2017, Optimization of operating parameters and kinetics for chloride leaching of lead from melting furnace slag. Trans. Nonferrous Met. Soc. China, 27, 2704−2714.
  • GREEN, V.S., STOTT, D.E., 2001, Polyacrylamide: a review of the use, effectiveness, and cost of a soil erosion control amendment. 10th International Soil Conservation Organization meeting, 384-389.
  • HABASHI, F., 1999. A Textbook of Hydrometallurgy. 2nd edition. Quebec City: Metallurgie Extractive Quebec.
  • JEFFREY, G.A., 1997. An introduction to hydrogen bonding. New York: Oxford university press.
  • KAPPES D.W., 2006. Advances in Gold Ore Processing. Amsterdam: Elsevier Science.
  • KAWATRA, S.K., EISELE, T.C., LEWANDOWSKI, K.A., GURTLER, A., 2006, Novel Binders and Methods for agglomeration of Ore. Michigan: Michigan Technological University.
  • KODALI, P., DEPCI, T., DHAWAN, N., WANG, X., LIN, C.L., MILLER, J.D., 2011, Evaluation of stucco binder for agglomeration in the heap leaching of copper ore. Minerals Engineering, 24, 886-893.
  • LABAHN, S. K., FISHER, J. C., ROBLETO, E. A., YOUNG, M. H., MOSER, D. P., 2010, Microbially mediated aerobic and anaerobic degradation of acrylamide in a western United States irrigation canal. J. Environ. Qual, 39, 1563–1569.
  • LANDE, S. S., BOSCH, S. J., HOWARD, P. H., 1979, Degradation and leaching of acrylamide in soil. J. Environ. Qual., 8, 133–137.
  • LEWANDOWSKI, K.A., KAWATRA, S.K., 2008, Development of experimental procedures to analyze copper agglomerate stability. Minerals and Metallurgical Processing, 25, 110–16.
  • LEWANDOWSKI, K.A., KAWATRA, S.K., 2009, Binders for heap leaching agglomeration. Minerals and Metallurgical Processing. 26, 1–24.
  • LEWANDOWSKI, K.A., KAWATRA, S.K., 2009, Polyacrylamide as an agglomeration additive for copper heap leaching. International Journal of Mineral Processing, 91, 88–93.
  • MCCOLLISTER, D., HAKE, C., SADEK, S., ROWE, V., 1965, Toxicologic investigations of polyacrylamides. Toxicol. Appl. Pharmacol, 7, 639–651.
  • MOHAMED HIZAM, M. N., NORZITA, N., IBRAHIM, M. I., LAWAL A, O., MOHD M. N., 2020, Synthesis and application of polyacrylamide grafted magnetic cellulose flocculant for palm oil wastewater treatment. Journal of Environmental Chemical Engineering, 8, 104014.
  • NASSER, M.S., JAMES, A.E., 2006, The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behavior of kaolinite suspensions. Separation and Purification Technology, 52, 241-252.
  • PAUTLER, J.B., GROSS, A.E., STROMINGER, M.G., 1990, New polymeric agglomeration aid improves heap leach efficiency at Brewer Gold. Advances in Gold and Silver Processing, 2, 15–21.
  • PEACEY, J., GUO, X.J., ROBLES, E., 2004, Copper hydrometallurgy-curent status, preliminary economics, future direction and positioning versus smelting. Transactions of Nonferrous Metals Society of China, 14, 560-568.
  • PENG, Y., JIN, D., LI, J., WANG, C., 2020, Flocculation of mineral processing wastewater with Polyacrylamide. 6th International Conference on Energy Science and Chemical Engineering, China, 1-8
  • PIETSCH, M., 2002. Agglomeration Processes. Weinheim: Wiley-VCH Verlag GmbH.
  • QIAN, L., YANHAO, L., YUANYUAN, B., YAN, Y., WEITAO, H., CHUN-LI, Y., 2018, Optimizing the preparation conditions of amphoteric polyacrylamide as a strength additive for recycled paper. Nordic Pulp & Paper Research Journal, 33, 297-308.
  • RULYOV, N., LASKOWSKI, J. S., CONCHA, F., CONCHA, F., 2011, The use of ultra-flocculation in optimization of the experimental flocculation procedures. Physicochem. Probl. Miner. Process., 47, 5-16.
  • SCHLITT, W.J., 1992. Solution mining: surface techniques, SME Mining Engineering Handbook. Englewood: Society for Mining, Metallurgy and Exploration.
  • SHANKER, R., RAMAKRISHNA, C., SETH, P. K., 1990, Microbial degradation of acrylamide monomer. Arch. Microbiol., 154, 192–198.
  • SHIPP, A., LAWRENCE, G., GENTRY, R., MCDONALD, T., BARTOW, H., VAN LANDINGHAM, C., 2006, Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects. CRC Critical Reviews in Toxicology, 36, 481-608.
  • SHIPP, A., LAWRENCE, G., GENTRY, R., MCDONALD, T., BARTOW, H., VAN LANDINGHAM, C., 2006, Acrylamide: review of toxicity data and dose-response analyses for cancer and noncancer effects. CRC Critical Reviews in Toxicology, 36, 481-608.
  • SHUKOR, M. Y., GUSMANIZAR, N., AZMI, N. A., HAMID, M., RAMLI, J., SHAMAAN, N. A., SYED, M. A., 2009, Isolation and characterization of an acrylamide-degrading Bacillus cereus. J Environ Biol., 30, 57-64.
  • SMITH, E. A., PRUES, S. L., OEHME, F. W., 1997, Environmental degradation of polyacrylamides. Ecotoxicol. Environ. Saf., 37, 76–91.
  • TANII, H., HASHIMOTO, K., 1981, Studies on in vitro metabolism of acrylamide and related compounds. Arch. Toxicol., 48, 157–166.
  • VAN, O.H., 1963. Introduction to Clay Colloid Chemistry. London: Inter-science Publishers.
  • WANG, L., MIN, F., CHEN, J., WANG, T., ZHOU, Z., 2022, Study of flocculation performance and mechanism of ultrafine montmorillonite particles with NPAM., Physicochem. Probl. Miner. Process., 58, 147790.
  • WANG, L., ZHANG, X., YIN, S., ZHANG, X., LIU, P., ILANKOON, I., 2023, Three-dimensional characterisation of pore networks and fluid flow in segregated heaps in the presence of crushed ore and agglomerates. Hydrometallurgy, 219, 106082.
  • WONG, S.S., TENG, T.T., AHMAD, A.L., ZUHAIRI, A., NAJAFPOUR, G., 2006, Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. Journal of Hazardous Materials, 135, 378-388.
  • XIONG, B., LOSS, R.D., SHIELDS, D., 2018, Polyacrylamide degradation and its implications in environmental systems. npj Clean Water, 17, 25-34.
  • ZHAO, L., BAO, M., YAN, M., LU, J., 2016, Kinetics and thermodynamics of biodegradation of hydrolyzed polyacrylamide under anaerobic and aerobic conditions. Bioresour. Technol., 216, 95–10.
  • ZHURAVLEV, L.T., 2000, The surface chemistry of amorphous silica. Journal of Colloids and Surfaces, 173, 1-38
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67164467-4599-4b88-96f4-979dcd8f3e0c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.