PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of chitosan, hyaluronic acid and/or titanium dioxide on the physicochemical characteristic of phospholipid film/glass surface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The production of preparations, whose destination action takes place in close proximity to living cells, increases the necessity to carry out studies concerning the determination of the biomaterial surface effect on the cellular response. In achieving this goal, physicochemical characteristic of the surface can be helpful. This can be established based on topography, chemical composition, wettability, and surface energy analysis. In addition, determining the changes of these properties which can occur as a result of surface modification will allow prediction of cell behaviour when contacting with biomaterial. In the study, the Langmuir-Blodgett technique was used. It enabled the transfer of the Langmuir monolayer formed from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) to a solid support. The DPPC film imitated a natural biological membrane capable of interacting with the components of the liquid subphase: chitosan (Ch), hyaluronic acid (HA) and/or titanium dioxide (TiO2). Depending on the type and strength of interactions of phospholipid molecules with the components of the subphase, the films obtained on the solid support were characterized by specific surface properties. Their characteristics based mainly on values of the work of adhesion in connection with films topography, allowed for statement that it is possible to form semi-interpenetrating Ch network in which HA is entrapped, contributing to the enhanced adhesion of the DPPC film, additionally intensified by TiO2 inclusion. This type of research permit for better understanding of the interactions at the interface, cell membrane-Ch/HA/TiO2 and can be important in the creation of a new generation of skin or tissue substitutes.
Rocznik
Strony
1535--1548
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wz.
Twórcy
  • Maria Curie-Skłodowska University, Faculty of Chemistry, Institute of Chemical Sciences, Department of Interfacial Phenomena, M. Curie-Sklodowska Square 2, PL-20031 Lublin, Poland
  • Maria Curie-Skłodowska University, Faculty of Chemistry, Institute of Chemical Sciences, Department of Interfacial Phenomena, M. Curie-Sklodowska Square 2, PL-20031 Lublin, Poland
  • Maria Curie-Skłodowska University, Faculty of Chemistry, Institute of Chemical Sciences, Department of Interfacial Phenomena, M. Curie-Sklodowska Square 2, PL-20031 Lublin, Poland
Bibliografia
  • AHSAN, S. M., THOMAS, M., REDDY, K. K., SOORAPARAJU, S. G., ASTHANA, A., BHATNAGAR, I., 2018. Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Biol. Macromol. 110, 97-109.
  • ARCHANA, D., SINGH, B.K., DUTTA, J., DUTTA, P. K., 2013. In vivoevaluation of chitosan-PVP-titanium dioxide nanocomposite as wound dressing material.Carbohydr. Polym. 95, 530-539.
  • ASPARUHOVA, M. B., KIRYAK, D., ELIEZER, M., MIHOV, D., SCULEAN, A., 2019. Activity of two hyaluronan preparations on primary human oral fibroblasts. J. Periodontal. 54, 33-45.
  • BEHERA, S. S., DAS, U., KUMAR, A., BISSOYI, A., SINGH, A. K., 2017. Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration.Int. J. Biol. Macromol. 98, 329-340.
  • BLODGETT, K. B., LANGMUIR, I., 1937. Built-up films of barium stearate and their optical properties. Phys. Rev. J. 51, 964-982.
  • CHIBOWSKI, E., JURAK, M., 2013. Comparison of contact angle hysteresis of different probe liquids on the same solid surface. Colloid Polym. Sci. 291, 391-399.
  • CROISIER, F., ATANASOVA, G., POUMAY, Y., JÉRÔME, C., 2014. Polysaccharide-coated PCL nanofibers for wound dressing applications. Adv. Health. Mater. 3, 2032-2039.
  • DODERO, A., WILLIAMS, R., GAGLIARDI, S., VICINI, S., ALLOISIO, M., CASTELLANO, M., 2019. A micro-rheological and rheological study of biopolymers solutions: Hyaluronic acid. Carbohydr. Polym. 203, 349-355.
  • GOZDECKA, A., WIĄCEK, A.E., 2017. Behaviorof TiO2/chitosan dispersion as a function of solution pH. Prog. Chem. Appl. Chitin Deriv. 22, 27-41.
  • GOZDECKA, A., WIĄCEK, A. E., 2018. Effect of UV radiation and chitosan coating on the adsorption-photocatalytic activity of TiO2 particles. Mat. Sci. Eng. C93, 582-594.
  • HERZOG, M., LI, L., GALLA, H. J., WINTER, R., 2019. Effect of hyaluronic acid on phospholipid model membranes.Colloids Surf. B: Biointerface 173, 327-334.
  • JOOYBAR, E., ABDEKHODAIE, M. J., ALVI, M., MOUSAVI, A., KARPERIEN, M., DIJKSTRA, P. J., 2019. An injectable platelet lysate-hyaluronic acid hydrogel supports cellular activities and induces chondrogenesis of encapsulated mesenchymal stem cells. Acta. Biomater. 83, 233-244.
  • KADERLI, S., BOULOCHER, C., PILLET, E., WATRELOT-VIRIEUX, D., ROUGEMONT, A.L., ROGER, T., JORDAN, O., 2015. A novel biocompatible hyaluronic acid-chitosan hybrid hydrogel for osteoarthrosis therapy. Int. J. Pharm. 483, 158-168.
  • KUMAR, P., 2018. Nano-TiO2 doped chitosan scaffold for the bone tissue engineering applications. Int. J. Biomat., Article ID 6576157, 7 pages.
  • LABIE, H., PERRO, A., LAPEYRE, V., GOUDEAU, B., CATARGI, B., AUZÉLY, R., RAVAINE, V., 2019. Sealing hyaluronic acid microgels with oppositely-charged polypeptides: A simple strategy for packaging hydrophilic drugs withon-demand release. J. Colloid Interface Sci. 535, 16-27.
  • LAFFLEUR, F., NETSOMBOON, K., ERMAN, L., PARTENHAUSER, A., 2019. Evaluation of modified hyaluronic acid in terms of rheology, enzymatic degradation and mucoadhesion.Int. J. Biol. Macromol. 123, 1204-1210.
  • LI, X., WU, L., ZHOU, Y., FAN, X., HUANG, J., WU, J., YU, R., LOU, J., YANG, M., YAO, Z., XUE, M., 2019. New crosslinked hyaluronan gel for the prevention of intrauterine adhesions after dilation and curettage in patients with delayedmiscarriage: A prospective, multicenter, randomized, controlled trial. J. Minim. Invasive. Gynecol. 26, 94-99.
  • LOH, Q.L., CHOONG, C., 2013. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue. Eng. Part B. Rev. 19, 485-502.
  • ŁADNIAK, A., JURAK, M., WIĄCEK, A.E., 2019a. Langmuir monolayer study of phospholipid DPPC on the titanium dioxide-chitosan-hyaluronic acid subphases. Adsorption 25, 469-476.
  • ŁADNIAK, A., JURAK, M., WIĄCEK, A. E., 2019b. Surface characteristic of DPPC monolayers deposited from the titanium dioxide -chitosan -hyaluronic acid subphases on glass support. Prog. Chem. Appl. Chitin Deriv. 24, 106-118.
  • ŁADNIAK, A., JURAK, M., WIĄCEK, A. E., 2019c. Wettability of DPPC monolayers deposited from the titanium dioxide -chitosan -hyaluronic acid subphases on glass. Colloids Interface3, 15.
  • MERO, A., CAMPISI, M., 2014. Hyaluronic acid bioconjugates for the delivery of bioactive molecules. Polymers 6, 346-369.
  • MOHANDAS, A., DEEPTHI, S., BISWAS, R., JAYAKUMAR, R., 2018. Chitosan based metallic nanocomposite scaffolds as antimicrobial wound dressings. Bioact. Mater. 3, 267-277.
  • MONTASER, A. S., WASSEL, A. R., AL-SHAYE'A, O. N., 2019. Synthesis, characterization and antimicrobial activity of Schiff bases from chitosan and salicylaldehyde/TiO2 nanocomposite membrane. Int. J. Biol. Macromol. 124, 802-809.
  • PARK, H., CHOI, B., HU, J., LEE, M., 2013. Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater. 9, 4779-4786.
  • PATCHORNIK, S., RAM, E., BEN SHALOM, N., NEVO, Z., ROBINSON, D., 2012. Chitosan–hyaluronate hybrid gel intraarticular injection delays osteoarthritis progression and reduces pain in a rat meniscectomy model as compared to saline and hyaluronate treatment. Adv. Orthop. 2012, 1-5.
  • PENG, C. C., YANG, M. H., CHIU, W. T., CHIU, C. H., YANG, C.S.,CHEN, Y. W., CHEN, K.C., PENG, R. Y., 2008. Composite nano-titanium oxide-chitosan artificial skin exhibits strong wound-healing effect-an approach with anti-inflammatory and bactericidal kinetics. Macromol. Biosci. 8, 316-327.
  • QU, L., CHEN, G., DONG, S., HUO, Y., YIN, Z., LI, S., CHEN, Y., 2019. Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2. Ind. Crop. Prod. 130, 450-458.
  • RATANAVARAPORN, J., CHUMA, N., KANOKPANONT, S., DAMRONGSAKKU, S., 2018. Beads fabricated from alginate, hyaluronic acid, and gelatin using ionic crosslinking and layer-by-layer coating techniques for controlled release of gentamicin. J. Appl. Polym. Sci. 136, 46893.
  • SHEIKHOLESLAM, M., WRIGHT, M. E. E., JESCHKE, M. G., AMINI-NIK, S., 2018. Biomaterials for skin substitutes. Adv. Health. Mater. 7, 1700897.
  • TAN, H., CHU, C., PAYNE, K., MARRA, K., 2009. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30, 2499-2506.
  • THEVENOT, P., HU, W., TANG, L., 2008. Surface chemistry influences implant biocompatibility. Curr. Top. Med. Chem. 8, 270-280.
  • TIWARI, S., BAHADUR, P., 2019. Modified hyaluronic acid based materials for biomedical applications. Int. J. Biol. Macromol. 121, 556-571.
  • ULUSAN, S., BÜTÜN, V., BANERJEE, S., EREL-GOKTEPE, I., 2019. Biologically functional ultrathin films made of zwitterionic block copolymer micelles. Langmuir 35, 1156-1171.
  • WANG, J., SUN, X., ZHANG, Z., WANG, Y., HUANG, C., YANG, C., LIU, L., ZHANG, Q., 2019. Silk fibroin/collagen/hyaluronic acid scaffold incorporating pilose antler polypeptides microspheres for cartilagetissue engineering. Mater. Sci. Eng. C. Mater. Biol. Appl. 94, 35-44.
  • WIĄCEK, A. E., 2007a. Effect of ionic strength on electrokinetic properties of oil/water emulsions with dipalmitoylphosphatidylcholine. Colloids Surf. A: Physicochem. Eng. Asp. 302, 141-149.
  • WIĄCEK, A. E., 2007b. Electrokinetic properties of n-tetradecane/lecithin solution emulsions. Colloids Surf. A: Physicochem. Eng. Asp. 293, 20-27.
  • WIĄCEK, A. E., GOZDECKA, A., JURAK, M., 2018a. Physicochemical characteristics of chitosan-TiO2 biomaterial. 1. Stability and swelling properties. Ind. Eng. Chem. Rese. 57, 1859-1870.
  • WIĄCEK, A.E., GOZDECKA, A., JURAK, M., PRZYKAZA, K., TERPIŁOWSKI, K., 2018b. Wettability of plasma modified glass surface with bioglass layer in polysaccharide solution. Colloids Surf. A:Physicochem. Eng. Asp. 551, 185-194.
  • WIĄCEK, A. E., JURAK, M., GOZDECKA, A., WORZAKOWSKA, M., 2017. Interfacial properties of PET and PET/starch polymers developed by air plasma processing. Colloids Surf. A: Physicochem. Eng. Asp. 532, 323-331.
  • XU, J., WANG, C., TIAN, Y., WU, B., WANG, S., ZHANG, H., 2018. Glass-on-LiNbO3 heterostructure formed via a two-step plasma activated low-temperature direct bonding method. Appl. Surf. Sci. 459, 621-629.
  • YUAN, Y., LEE, T. R., 2013. Contact angle and wetting properties. Surface Science Techniques, Chapter 1, 3-34, XXIII, Editors: Bracco, G., Holst, B., Springer Publishing, ISBN 978-3-642-34243-1.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6714c39d-0268-4092-9a65-5384ed5dd662
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.