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PAWEŁ SIKORA*

SIMULATION OF ROCK MASS HORIZONTAL DISPLACEMENTS WITH USAGE 
OF CELLULAR AUTOMATA THEORY.

SYMULACJA PRZEMIESZCZEŃ POZIOMYCH GÓROTWORU Z WYKORZYSTANIEM 
TEORII AUTOMATÓW KOMÓRKOWYCH

In the article there was presented two dimensional rock mass model as a deterministic finite cellular 
automata. Used to describe the distribution of subsidence of rock mass inside and on its surface the theory 
of automata makes it relatively simple way to get a subsidence trough profile consistent with the profile 
observed by geodetic measurements on the land surface. As a development of an existing concept of the 
rock mass model, as a finite cellular automaton, there was described distribution function that allows, 
simultaneously with the simulation of subsidence, to simulate horizontal displacements inside the rock 
mass model and on its surface in accordance with real observations. On the basis of the results of numerous 
computer simulations there was presented fundamental mathematical relationship that determines the 
ratio of maximum horizontal displacement and maximum subsidence, in case of full subsidence trough, 
in relation to the basic parameters of the rock mass model. The possibilities of presented model were 
shown on the example of simulation results of deformation distribution caused by extraction of abstract 
coal panel. Obtained results were consistent with results obtained by geometric-integral theory.

Keywords: horizontal displacements, rock mass deformation, mining area protection, cellular automata

W artykule przedstawiono płaski model górotworu jako deterministyczny, skończony automat ko-
mórkowy. Wykorzystana do opisu rozkładu deformacji wewnątrz górotworu i na jego powierzchni teoria 
automatów pozwala w relatywnie prosty sposób uzyskać profil niecki obniżeniowej zgodny z profilem 
obserwowanym pomiarami geodezyjnymi na powierzchni terenu. 

Przedstawiony w pracy najprostszy model górotworu przedstawia jego płaski przekrój w postaci 
regularnej siatki komórek, które ściśle do siebie przylegają i mają jednakowy kształt (Rys. 1). Dla modelu 
zdefiniowano podstawowe parametry automatu komórkowego takie jak: warunki brzegowe, decydujące 
o początku i końcu symulacji, sąsiedztwo komórkowe, określające przestrzeń w siatce komórek, w obrębie 
której dochodzi do bezpośredniej wymiany informacji zapisanych w poszczególnych komórkach oraz 
funkcję przejścia, która decyduje o ostatecznej charakterystyce rozkładu symulowanego zjawiska w siatce 
automatu. W artykule zastosowano deterministyczną funkcję rozkładu. 
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W wyniku licznych prób modelowych stwierdzono, że stosowana funkcja rozkładu dla symulacji 
rozkładu obniżeń (Rys. 3) nie pozwala na symulację ruchów poziomych jakościowo i ilościowo zgodnych 
z przemieszczeniami poziomymi obserwowanymi w rzeczywistości. Jako rozwinięcie dotychczasowej 
koncepcji budowy górotworu jako skończony automat komórkowy, w pracy opisano funkcję rozkładu 
(Rys. 5), która pozwala, równolegle do symulacji obniżeń, symulować przemieszczenia poziome zgodne 
z wynikami obserwacji geodezyjnych.

Na podstawie wyników licznych symulacji komputerowych opisano podstawową matematyczną 
zależność (wzór 11) określającą stosunek maksymalnych przemieszczeń poziomych do maksymalnych 
obniżeń w niecce nadpełnej w odniesieniu do przyjętych parametrów opisanego modelu górotworu, tj.: 
odwzorowywanych w rzeczywistości wymiarów komórki, wartości tzw. przejścia głównego, głębokości 
eksploatacji oraz parametru maksymalnego nachylenia (będącego odpowiednikiem np. parametru tgβ 
w teorii Budryka-Knothego).

Dla pokazania możliwości zaproponowanego automatu komórkowego wykonano symulację rozkładu 
deformacji wewnątrz modelu górotworu i wyznaczono profil linii obniżeń, nachyleń, przemieszczeń 
poziomych i odkształceń poziomych powierzchni modelu dla przykładu abstrakcyjnego, wyeksploato-
wanego pokładu o określonych parametrach górniczo-eksploatacyjnych. W wyniku symulacji otrzymano 
nadpełną nieckę obniżeniową o kształcie opisywanym przez całkę z funkcji Gaussa, w której rozkład 
przemieszczeń poziomych był zbieżny z modelem wzorcowym.

Słowa kluczowe: przemieszczenia poziome, deformacje górotworu, ochrona terenów górniczych, automat 
komórkowy

1. Introduction

The Cellular Automata Theory, begun in the 1940s of the last century, found widespread ap-
plication in many fields of science thanks to its simplicity and exceptional complexity of received 
results (Wolfram, 2002). The Cellular Automaton (CA) was originally discovered by Stanislav 
Ulam (Pickover and Clifford, 2009) and John von Neumann (Schiff & Joel, 2011) at the Los 
Alamos National Laboratory. Cellular automata are commonly used e.g. in computer science, 
to test the algorithms, in physics to simulate the spread of fire, gas, heat, etc., or to simulate the 
traffic (Chopard at al., 1996). It turns out that despite the huge potential in the field of rock me-
chanics and mining area protection, so far, the theory wasn’t practically applied. Today, in Poland, 
predictions of the impact of underground mining on the surface mainly rely on methods which 
uses geometric-integral theory to describe the distribution of deformation and methods basing 
on models of continuous centre where the state of stresses and displacements defines a system 
of differential equations and the equation of state dependent on the adopted model.

In previous publications there was proved (Białek & Sikora, 2012; Sikora, 2010, 2011, 2013, 
2014) that using cellular automata to describe the rock mass deformation, results can be very 
similar, and in some cases even identical with the results obtained with application of different 
methods, e.g. Knothe’s method. So far, it has been shown that for certain conditions the theory of 
cellular automata allows in a relatively easy way to get subsidence trough profile consistent with 
the profile observed by geodetic measurements. Moreover it is possible to simulate directly the 
impact of heterogeneous build of rock mass and nonlinear properties of summing of the mining 
influences on the subsidence distribution process. Especially there was presented the method of 
simulation of the impact of faults on the distribution of subsidence. Normal faults, in a form of 
splits, were implemented on the edges of corresponding cells. Modified distribution function al-
lows for limitation of subsidence propagation trough the split. Nonlinear properties of subsidence 
summation were implemented conditioning the value of subsidence propagation to the sustained 
tilt values. In a consequence it is possible to simulate e.g. the impact of multiple extraction on 
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the subsidence distribution. Finally there was presented build concept of the spatial rock mass 
model as a cellular automaton.

In this paper, which is a development of the prior solutions, there will be presented a method of 
horizontal displacements simulation. In consequence the solution will allow for the characteristics 
of the horizontal displacements and horizontal deformations within the rock mass and on its 
surface. The assumptions and the method of implementation were shown on the example of the 
simplest two-dimensional rock mass model (Sikora, 2011) built in relation to the deterministic 
finite automaton definition (Moore, 1956).

2. The model of the rock mass as a deterministic finite 
automaton

By cellular automata as a rock mass model can be specified a number of commonly used 
algorithms, e.g. rock mass model described by T. Niemiec (Niemiec, 1985; Niemiec et al., 2008). 
However in practise this term is being used in some specific cases and applications. The simplest 
definition describes cellular automaton as a mathematical model that its structures are determined 
by the net of cells, theirs states, transitions and rules of transitions (Moore, 1956).

In relation to the previous definition there can be build the simplest rock mass model as 
its flat cross-section presented by the net of discrete cells. Detailed built concept of that model 
and its variants were described in previous publications (Sikora, 2010, 2011). However there is 
a group of fundamental parameters describing a model of the rock mass as a deterministic finite 
automaton, including: the type of cell, the net of cells, so called cell’s neighbouring, boundary 
conditions and a transition function that decide in most about the final characteristics of the 
simulated phenomena. Subsequently, these parameters are shortly discussed.

2.1. Cell type and the grid of cells

Described case of the rock mass cross-section presume its segmentation into regular net of 
cells of determined number of rows m and columns n. All cells has the same shape of rectangle and 
the same size and also closely adhere to each other (Fig. 1). Cell’s dimensions are corresponding 
with real dimensions of width Sk [m] and height Wk [m].

Thus formed table (grid of cells) represents rock mass in a flat system, where vertical axis 
is converging with columns (depth). Individual rows relate to the respective levels of rock mass, 
however the last row m (the highest) relates to the land surface. 

2.2. Initial state

In case of presented type of cellular automaton it is assumed that every cell starts in the 
same state, except for a finite number of cells in other states. It is called configuration (Schiff 
and Joel, 2011) or initial state.
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Fig. 1. Cellular automata grid representing horizontal section trough rock mass and extracted longwall 
(Sikora, 2013)

In case of considered rock mass model, as a initial state, can be assumed two-dimensional grid 
of cells. For every single cell can be assigned a value representing the void. At the beginning values 
assigned to proper cells (initial subsidence) shows performed mining operations (equation 1). 

 pi, j xm,n = agp (1)

where:
 pi, j — elementary particle of the seam with coordinates i, j,
 xm,n — a single cell in the grid of automaton with coordinates m,n,
 wm,n — initial subsidence in the current cell with coordinates m,n,
 gp — the average thickness of the seam,
 a — subsidence factor – the theory’s parameter that shows the difference between the 

volume of extracted seam and the subsidence trough on the surface (subsidence at 
the surface depends on the strength and nature of the rocks overlying the seam).

The above equation means that for every particular element of the seam pi, jj (i, j are its real 
coordinates) corresponds at least one cell xm,n in the CA’s grid. For that cell it’s being ascribed 
the value of extraction height (of the seam) gp multiplied by the value of subsidence factor a.

The final state is the moment when the sum of void’s volume in the row representing the 
surface of the mining area equals the sum of void’s volume assigned to specified cells at the 
initial state.

It should be noted that the initial conditions does not affect the cell shape. Theoretically  
cells are considered to be shapeless and it’s not required to visualize them. There will be analysed 
only the effect of their work. 
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2.3. Cell’s neighborhood

As a neighborhood of the individual cell meant all cells that are directly related by 
a dependence function (Schiff and Joel, 2011). 

NW N NE

W E

SW S SE

Fig. 2. Moore type neighborhood defined for the dark cell in the regular net of Cellular Automaton 
(own source)

In the rock mass as a closest neighbourhood of a post-operational void can be understood 
the immediate surrounding area (cave zone). 

In the CA theory every single cell has the same neighbourhood. One of the most popular 
type of neighbourhood is the Moore’s type (Fig. 2) which include all adjacent cells to the current 
cell. Formally this is the best type of neighbourhood that could be considered in case of mapped 
void in the rock mass model.

The force of gravity causes the formed empty space in the rock mass (void) is being filled 
with overhanging rocks. Taking this assumption and the lack of existence of any additional 
forces affecting tightening of the void, there can be finally determined the cell’s neighborhood. 
Therefore it’s limited to three adjacent cells in the row above the main cell (cells NW, N and NE 
in the Fig. 2). In other words every cell will interact only with neighbor cells.

2.4. Propagation function in order to the rock mass subsidence 
simulation 

The manner of operation, compatibility features of the model with the real object and the 
state of individual elementary cell in a discrete time decide first and foremost the evolution rule 
of cellular automaton. The evolution of the model base on the boundary conditions defined for 
the automaton and the propagation function that determine intercellular relations in the space 
defined by the cell’s neighborhood. 

In case of presented deterministic model (there is also stochastic model (Sikora, 2011)) 
fulfilment of the post-operational void rely on determination of partial distribution of the void’s 
volume outflow in the range of cell’s neighborhood. Presented algorithm in the Fig. 3 assumes 
that the partial value of a void is filled by the rocks volume from a cell placed directly above the 
void. It’s so called main transition P. Other transitions take place symmetrically with respect to 
the main transition to cells from the neighborhood (on the left and right). For values of P = 0,5 
presented characteristics of the propagation function leads to the subsidence distribution (on 
the surface and inside the rock mass) described by J. Litwiniszyn (1954) for the loose medium 
model (Sikora, 2011).
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Fig. 3. Sample characteristic of distribution function in deterministic model of rock mass in the scope of de-
fined neighborhood for the individual cell in case of simulation of subsidence (Sikora, 2010)

The simulation is performed separately for each cell (in the copy of main grid). The fol-
lowing cells, taken to simulation, are selected accordingly to the direction of mining operations. 

Fig. 4. Symmetrical distribution of subsidence from single cell (Białek and Sikora, 2012)

The results are being summed in a common table. This method reproduces real progress 
of mining operations. Also it is possible to depend the progressive deformation in the model on 
already passed value of subsidence, which in turn allow for simulation of nonlinear properties 
of subsidence summing (Białek & Sikora, 2012). 
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2.5. Practical implementation of the Cellular Automaton

Simulation of rock mass deformation within presented build concept (algorithm) needs to 
use computer with a dedicated software. For the purpose of the current rock mass model there 
was written a new program with usage of Visual Studio Integrated Development Studio (IDE). 
The algorithm was written in Visual Basic.NET programming language. The realization of the 
main presumption of CA, that during every iteration all cells in the grid must evolve, was done 
by simple loop “for”. Entire grid of cells will evolve so many times until final state conditions 
will be met (section 2.2).

In case of 2-dimensional model there are no special restrictions about the computer resources. 
Practical tests shows that modern PC-type computers can perform simulation, even for large 
grids, in a very short time (comparing e.g. with Knothe’s method). 

3. Fundamentals of simulation of vertical displacements

The basis for any considerations related to the practical use of cellular automata to simulate 
subsidence of rock mass is the relationship (equation 2) binding cell’s dimensions Sk and Wk, the 
depth of mining operation H, the value of maximal subsidence wmax = ag and the maximum slope 
Tmax of simulated full subsidence trough (the type of trough where can be observed theoretical 
maximum subsidence wmax) (Sikora, 2011; Białek & Sikora, 2012).

 
max

mm
m

k
P

k

WagT A
S H

  (2)

where: AP — matching factor due to the value of the parameter P.

Based on the equation 2, knowing the value of theoretical maximum subsidence (in the full 
subsidence trough) and the value of maximum slope Tmax can be determined the relationship 
between the dimensions of the cell and the number of rows in the grid that allows to build a cel-
lular automaton as a model of the rock mass by means of which can be approximated subsidence 
profile to preset mining conditions.

As the result of simulation there’s being obtained subsidence distribution in the whole section 
of the cell’s grid. It allows for the analysis of the subsidence trough profile, of the shape described 
by the integral of the Gaussian function (Sikora, 2010), at any level of rock mass.

4. The problem of simulating the distribution of horizontal 
displacement

Parallel to the simulation of subsidence distribution, can be simulated horizontal displace-
ments. Registration of results takes place in a separate table (grid of cells), which is a copy of 
a subsidence grid. The values of horizontal displacements in particular passes will depend, like in 
case of subsidence, on the value of main transition P, in a manner consistent with the algorithm 
shown in the Fig. 5.
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Fig. 5. Characteristic of the distribution function for simulation of horizontal displacements in the deterministic 
rock mass model in the scope of defined cell’s neighborhood (own source)

The above characteristics of the propagation function for horizontal displacements simula-
tion shows that for assumed system of cells there are being registered only values of subsidence 
transferred to cells placed on the right and left in a row above the source cell. Transfer to the left 
cell is being registered as a negative value. Vertical transfer in case of horizontal displacement 
simulation is omitted (is not registered). 

As the effect of presented algorithm are obtained, directly and practically independently to 
the subsidence simulation, results qualitatively consistent with those observed in a reality. Un-
fortunately results are multiple smaller then observed in reality or being calculated with usage of 
different methods, e.g. Knothe’s theory. However the maximal values are in the same places that 
in reference results. Although different combinations of the model’s parameters it’s impossible 
to obtain results that are also quantitative compatible (in case of present concept). For presented 
set of model assumptions can be simulated directly only vertical deformations accordingly with 
the observed in reality. 

Similar problem of the modeled rock mass displacements has been described, among oth-
ers, by F. Dymek (1979), who considered analogous solutions for expanding and non-expanding 
type of loose medium. Described in the literature case of the non-expanding centre corresponds 
concept of rock mass model as a finite cellular automaton, in which does not appear the “pres-
sure side” between cells. In mentioned article (Dymek, 1979) was presented the general state 
of stress and displacement of non-expanding loose center in case of plane strain state in the 
following form (equation 3):
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where:
 z — is the depth value,
 αx, E — material constants in case of non-expanding centre (Dymek, 1979),
 τxz — shear stress.

The author (Dymek, 1979) by assuming displacement boundary conditions approximately 
describes the displacement of the ceiling over extracted seam (equation 4),

 

0   for  0, ;
,0

0  for  0, ;

, 0

w const x a
w x

x a

w x  (4)

has received solution (equation 5), describing rock mass vertical deformation (subsidence) 
above extracted seam. 

 

max,
2

x xw
w x z x x a

z z
 (5)

It should be noted that the presented equation after certain transformation, corresponds to 
a similar formula (equation 6), which was received by J. Litwiniszyn (1953) in the course of his 
research on stochastic center.

 

2max,
x
z

w
w x z e d   (6)

where:  — is a variable (Litwiniszyn, 1953).

Finally, substituting the calculated value of subsidence w (equation 5) to the system of equa-
tions (equation 3) can be determined the value of horizontal displacement u. 

From obtained results the author (Dymek, 1979) conclude that non-expanding centre model 
can be used to describe the state of stress and displacement of rock mass when the extracted seam 
lies horizontally on a sufficiently large depth. However, the solution leads to very flat horizontal 
displacements distributions in comparison to those observed by geodetic observations. Finally, 
in practice they’re determined with usage of the parameter B (equation 7) matching vertical and 
horizontal displacements (Awierszyn, 1947).

 

wu x B BT x
x

  (7)

The value of the parameter B for the land surface is variously accepted in practice and 
literature (Knothe, 1984; Drzęźla, 1978; Popiołek, 1976; Popiołek & Ostrowski, 1981;Tajduś & 
Tajduś, 2015). Originally, according to W. Budryk (1953), the value of parameter B was deter-
mined basing on the following formula (equation 8):

 
0, 4

tan
HB   (8)

where: β — the angle of main influences range.
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Finally, taking the value of the parameter B in accordance with the above equation (equation 
8), the theoretical value of the maximum horizontal displacements umax, in case of full subsid-
ence trough (and in the case of a half-plane), can be determined from the following relationship 
(equation 9):

 max max0,4 mmu w   (9)

In principle, one could stop at the presented solution. However, due to the potential studies of 
the impact of the heterogeneity of the rock mass and nonlinear properties of mining deformations 
summation on the distribution of horizontal displacements (with usage of CA) there’s a need to 
develop a new distribution function (Tajduś, 2014). 

In the case of cellular automaton in which the distribution of deformation takes place in 
the entire space, on the basis of numerous tests and studies of F. Dymek solution (1979), it was 
found the way to simulate horizontal movements both quantitatively and qualitatively consistent 
with a reference model. The solution may be additional dependence of the propagation function 
for the horizontal displacements to the ratio of mapped (assumed) cell dimensions Sk, Wk and 
the distance of the cell, considered in current iteration of simulation, to the cell representing the 
source void, for which there’s being done simulation of elementary distribution of deformations. 
The schema of properly modified non-linear distribution function in case of simulation of hori-
zontal displacements in a discrete time for the elementary cell (void) was shown in the figure 6.

 

Fig. 6. Distribution function for simulation of horizontal displacements that make the propagation value condi-
tional on the ratio of cell’s projected dimensions and the distance L between the concerned cell wm,n 

and the elementary cell representing extracted panel pi for which is being performed partial simulation 
of horizontal displacement (own source)
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In the figure above there was presented part of the grid and the elementary void pi. In the 
distance of Lpi-m,n there’s placed cell of index m,n. This cell can be called main cell. For that cell 
is being performed transition function in the range of defined cell’s neighborhood (in the discrete 
time). Some part of the void’s volume from cell is being ascribed to two cells on the right and 
left in the row above. The algorithm of transition, defined in the Fig. 6, is never changing. The 
algorithm is being repeated for every single cell due the fact that all cells must evolve (section 2.5).

For a suitably modified distribution function there were performed a series of simulations of 
horizontal and vertical displacements in which were created full subsidence troughs. Every time 
there was determined ratio (equation 10) of the value of maximum horizontal displacements umax 
to the value of maximal subsidence wmax on the level representing the land surface.

 

max

max
U

u
B

w
  (10)

Individual simulations differed by adopted depth of mining operations, the value of main 
transition P, the value of maximum tilt aT (Białek & Sikora, 2012) and relating values of adopted 
cell dimensions Sk and Wk. Sample results were shown in the Table 1.

Maximal values of subsidence wmax and horizontal displacements umax at given calculation 
level were determined as the extreme values from corresponding to the current level’s row of 
automaton.

TABLE 1 

Exemplary simulation results of subsidence and horizontal displacements for different parameters

H [m] aT P Sk [m] Wk [m] BU

300 2,0 0,8 7,756 1 0,397
500 2,0 0,5 8,908 2 0,999
800 1,6 0,5 19,919 4 0,799
1000 4,0 0,3 3,754 1 2,809
1200 2,0 0,8 21,937 2 0,398

On the basis of numerous results of simulations there was determined formula describing 
the ratio of maximal horizontal displacements to the maximal subsidence (in the full subsidence 
trough) in relation to the cell’s dimensions, mining operation depth, the value of parameter aT 
and the value of main transition P (equation 11).

 

0,5

1k
U U T

k k

W HB A P a
S W

  (11)

where: AU — adjustment parameter depending on the depth of mining operations.

The accuracy of the simulation is determined mostly by assumed cell’s dimensions (Sikora, 
2011). In turn, the accuracy of designation of the AU parameter mainly affects the accuracy of 
determining the value of the parameter BU. The average value of parameter AU for performed simu-
lations was equal –0,196 while the standard deviation 0,046. The parameter AU can be determined 
more accurately by a polynomial dependent on the depth of simulated mining operations H [m]. 
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In case of adoption of the 3rd degree polynomial (equation 12) maximum absolute error of BU, 
calculated as the difference between the theoretical and practical value, does not exceed 0,01.

 
3 20,000000001 0,000003 0,0024 0,31UA H H H   (12)

On the basis of directly obtained table with distribution of horizontal displacements can be 
determined table of horizontal strain ε, which is calculated in individual cell from the following 
formula (equation 13):

 

, 1 ,
,

mm 
m

m n m n
m n

k

u u
S

  (13)

Using equation 2 and 11 can be determined simulation parameters that allows directly 
generate subsidence trough of assumed slope and ratio of maximum subsidence to maximum 
horizontal displacement. 

5. Example of simulation of subsidence and horizontal 
displacements

In order to show the possibilities of presented model there was done simulation of subsid-
ence and horizontal displacements of rock mass caused by extraction of abstract coal seam lying 
horizontally on the depth of 300 m and length of 800 m. It was assumed that maximum subsidence 
in subsidence trough will be wmax = ag = 1000 mm. There were also assumed values of maximum 
tilt factor aT = 2,0 (eg. equivalent of parameter tanβ in the theory of S. Knothe (1984)) and the 
value of parameter BU = 0,4.

Applying equations 2 and 11, with usage of the last squares method, there were determined 
values of parameters Sk, Wk and P to met earlier assumptions.
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Fig. 7. The chart of subsidence W [m] and horizontal displacements U [m] of subsidence trough formed 
on the model’s surface (own source)
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Interpolated results of simulation in the form of graphs of subsidence, slopes, horizontal 
displacements and horizontal strains on the surface of the rock mass model were shown in the 
following pictures (Figure 7 and 8).
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Fig. 8. The chart of slopes T [mm/m] and horizontal strains ε [mm/m] of subsidence trough formed 
on the model’s surface (own source)

As it results from the illustrated example obtained values of rock mass subsidence are 
consistent with results that can be obtained e.g. by Knothe’s method for corresponding values of 
parameters. Obtained subsidence trough as a result of simulation represents its profile that can 
be described by the integral of the Gaussian function. Maximum value of slope Tmax obtained by 
rock mass subsidence simulation, for assumed automaton parameters, is equal to the theoretical 
value resulting from S. Knothe theory (1984), that can be calculated from the following formula 
(equation 14):

 
max

tan mm6,67
m

a gT
H

  (14)

The maximum value of horizontal displacements, determinated directly from simulation, 
umax = 400 mm is also consistent with the theoretical value, wherein horizontal displacements are 
defined by assuming proportionate to the slope accordingly to the postulate of S.G. Awierszyn 
(1947) (equation 7,8 and 9).

Horizontal strains have been determinated on the basis of the horizontal displacements values. 
Maksimum value εmax is also consistent with the theoretical value resulting from the S. Knothe 
formula calculated from the following equation (equation 15):

 
max

mm0,6 4  
m

ag
r

  (15)
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6. Summary

In the article there were reminded fundamentals of the simplest rock mass model construc-
tion as a deterministic finite cellular automaton. The model presents flat cross-section trough the 
rock mass by its fragmentation into a regular grid of cells. Cells have the same shape and closely 
adhere to each other. Every cell has attributed dimension of width and length.

Subsequently there were described the basic features of the model in relation to the theory 
of cellular automata. Characterized been cell’s neighborhood and the initial conditions of the 
automaton. In relation to previous publications there were summarized existing solutions in 
terms of subsidence simulation including basic characteristics of the distribution function and 
developed formula binding cell’s dimensions, the value of main transition P and the depth of 
mining operations with the value of maximum subsidence and slope in the resulting full subsid-
ence trough on the model’s surface.

Based on current knowledge, by adding to the model second grid of cells, being a copy of 
a subsidence grid, there was presented concept of propagation function which allows to simulate 
parallel subsidence and horizontal displacements quantitatively and qualitatively consistent with 
a reference model basing on the geometric-integral theory.

On the basis of numerous simulations, for assumed distribution function, there was presented 
dependence determining the ratio of maximal horizontal displacements to the maximal subsidence 
in the full subsidence trough in relation to specified cell’s dimensions, the value of main transi-
tion P, the depth of underground mining operations and value of the parameter of maximal tilt aT.

Finally the properties of presented model were verified on chosen example of simulation of 
subsidence and horizontal displacements propagation. Obtained results were quantitatively and 
qualitatively consistent with results that can be obtained, for corresponding parameters values, 
eg. with usage of geometric-integral theory.

Presented solution characterize by a simplicity in relation to the complexity of obtained 
results. It should be noted that the algorithm doesn’t need any special mathematical knowledge 
to apply it. It has been shown that for certain parameters values the results of calculations with 
usage of cellular automaton are consistent with those observed in reality both in case of horizontal 
and vertical displacements. These advantages and great potential for further development cause 
that the model has a chance to be practically applied in the future.
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