PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical modeling of convective heat and mass transfer of a rotating nano-fluid bounded by stretching and stationary walls in a vertical conduit

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of thermal emission and unvarying magnetic field of convective heat and mass transfer of a rotating nano-liquid in an upright conduit constrained by a stretching and motionless wall is studied. The temperature, concentration profile, primary and secondary velocities have been computed through similarity transformation and fourth-order Runge-Kutta shooting technique. The objective of this article is to measure the impact of emission constraint, Brownian movement constraint and Eckert number, thermophoresis constraint, Prandtl number, space, and temperature-dependent heat source constraint on velocity. The results are presented in tables and graphs. Further, various constraint impacts on the skin friction coefficient, heat and mass transfer rates are also explored. This work is pertinent to biotechnological and engineering uses, like mass and heat transfer enhancement of microfluids and design of bioconjugates.
Rocznik
Strony
69--83
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
  • Department of Mathematics, Santhiram Engineering College Nandyal, Andra Pradesh, INDIA
autor
  • Department of Mathematics, TKRCET, Hyderabad Telangana, INDIA
autor
  • Department of Mathematics, B.L.D.E.A's V.P. Dr. P.G. Halakatti College of Engineering and Technology Vijayapur, Karnataka, INDIA
Bibliografia
  • [1] Choi S.U.S. (1995): Enhancing thermal conductivity of fluids with nanoparticles with developments and applications of non-Newtonian flows. Proc. ASME Int. Mech. Engg. Congress Exposition, FED 231/MD, vol.49, pp.99-105.
  • [2] Eastman J.A., Choi S.U.S., Li S., Yu W. and Thompson L.J. (2001): Anomalously increased effective thermal conductivity of ethylene glycol – based nanofluids containing copper nanoparticles. Appl. Phys. Lett. vol.78, No.6, pp.718-720.
  • [3] Keblinski P., Phillpot S.R., Choi S.U.S. and Eastman J.A. (2002): Mechanisms of heat flow in suspensions of nano-sized particles (nano-fluids). Int. J. Heat Mass Transf. vol. 45, No.4, pp.855-863.
  • [4] Buongiorno J. (2006): Convective transport in nanofluids. J. Heat Transf. vol.128, pp.240-250.
  • [5] Kleinstreue C., Li J. and Koo J. (2008): Microfluidics of nano-drug delivery. Int. J. Heat Mass Transf. vol.51, No.23, pp.5590-5597.
  • [6] Bachok N., Ishak A. and Pop I. (2010): Boundary-layer flow of nanofluids over a moving surface in a flowing fluid. Int. J. Thermal Sci. vol.49, No.4, pp.1663-1668.
  • [7] Circar, Mukharjee (2008): Effects of mass transfer and rotation on flow past a porous plate in a porous medium with variable suction in slip flow. Acta Cienc. Indica Math., vol.34, No.2, pp.737-751.
  • [8] Khan W.A. and Pop I. (2010): Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. vol.53, pp.2477-2483.
  • [9] Hamad M.A. and Ferdows M. (2011): Similarity solution of boundary layer stagnation – point flow towards a heated porous stretching sheet saturated with a nanofluid with heat absorption/generation and suction/blowing: a lie group analysis. Comm. Nonlinear Sci. and Numer. Simu. vol.17, No.1, pp. 132-140.
  • [10] Makinde O.D. and Aziz A. (2011): Boundary layer flow of a nanofluid past a stretching sheet with convective boundary condition. Int. J. Heat Mass Transf. vol.50, pp.1326-1332.
  • [11] Gorla R.S. and Chamkha A. (2011): Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid. J. Modern Phys. vol.2, pp.62-71.
  • [12] MadhusudhanReddy Y. and PrasadRao D.R.V. (2012): Effect of thermo diffusion and chemical reaction on non-Darcy convective heat and mass transfer flow in a vertical channel with radiation. Int. J. Math. Arch., vol.4, pp.1-13.
  • [13] Rana P. and Bhargava R. (2012): Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study. Comm. Nonlinear Sci. and Numer. Simu., vol.17, No.1, pp.212-226.
  • [14] Nadeem S. and Lee C. (2012): Boundary layer flow of a nanofluid over an exponentially stretching surface. Nanoscale Res. Lett. vol.7, pp.1663-1668.
  • [15] Sankad G. and Dhange M. (2016): Peristaltic pumping of an incompressible viscous fluid in a porous medium with wall effects and chemical reactions. Alexandria Eng. J. vol.55, pp.2015-2021.
  • [16] MadhaviLatha S. and Prasad Rao D.R.V. (2017): Effect of chemical reaction and thermo-diffusion on convective heat and mass transfer flow of a rotating fluid through a porous medium in a vertical channel with stretching walls. Int. J. Math. Arch. vol.8, No.5, pp. 65-79.
  • [17] Sulochana C. and Ramnakrishna G.N. (2017): Effect of heat sources on non-Darcy convective heat and mass transfer flow of Cuo-water and Al2O3-water nanofluids in vertical channel. Int. J. Emer. Trend. Eng. Dev. vol.63, No.7, pp.52-69.
  • [18] Hazem A.A. (1998): Unsteady MHD flow near a rotating porous disk with uniform suction or injection. Fluid Dynam. Res., vol.23, No.5, pp.283-290.
  • [19] Mohan M. (1977): Combined effects of free and forced convection on magneto hydrodynamic flow in a rotating channel. Proc. Indian Acad. Sci. vol.85, No.4, pp.383-401.
  • [20] PrasadRao D.R.V., Krishna D.V. and Debnath L. (1982): Combined effect of free and forced convection on MHD flow in a rotating porous channel. Int. J. Math. Sci. vol.5, No.1, pp.165-182.
  • [21] Zanchini E. (1998): Effect of viscous dissipation on mixed convection in a vertical channel with boundary conditions of the third kind. Int. J. Heat Mass Transf. vol.41, pp.3949-3959.
  • [22] Singh K.D. and Mathew (2009): An oscillatory free convective MHD flow in a rotating vertical porous Chanel with heat source. Ganita. vol.60, No.1, pp.91-110.
  • [23] Kuznetsov A.V. and Nield D.A. (2010): Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Thermal Sci. vol.49, pp.243-247.
  • [24] Sreenivas Rao (2017): MHD mixed convective heat and mass transfer in a vertical channel with stretching walls. Int. J. Res. Dev. Tech. vol.7, No.4, pp.21-32.
  • [25] Hamad M.A., Pop I. and Ismail A.I. (2011): Magnetic field effects on convection flow of a nanofluid past a vertical semi-infinite flat plate. Nonlinear Anal. Real World Appl., vol.12, pp.1338-1346.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-670da8d4-850d-40b7-9935-800be0fb2cb7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.