Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Solid Mechanics Conference (SolMech 2018) (41 ; 27–31.08. 2018 ; Warsaw, Poland)
Języki publikacji
Abstrakty
Thermal processes in domain of thin metal film subjected to an ultrashort laser pulse are considered. A mathematical description of the process discussed is based on the system of four equations. Two of them describe the electrons and lattice temperature, while third and fourth equations represent the generalized Fourier law, it means the dependencies between the electrons (lattice) heat flux and the electrons (lattice) temperature gradient. In the generalized Fourier law the heat fluxes are delayed in relation to the temperature gradients which consequently causes the appearance of heat fluxes time derivatives in the appropriate equations. Depending on the order of the generalized Fourier law expansion into the Taylor series, the first- and the second-order model can be obtained. In contrast to the commonly used first-order model, here the second-order two-temperature model is proposed. The problem is solved using the implicit scheme of the finite difference method. The examples of computations are also presented. It turns out that for the low laser intensities the results obtained using the first- and the second-order models are very similar.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
377--391
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Institute of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Konarskiego 18a, Poland
autor
- Institute of Computational Mechanics and Engineering, Silesian University of Technology, 44-100 Gliwice, Konarskiego 18a, Poland
Bibliografia
- 1. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultrashort laser pulses, Soviet Journal of Experimental and Theoretical Physics, 66, 776–781, 1974.
- 2. Z. Lin, L.V. Zhigilei, V.Celli, Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium, Physical Review B, 77, 075133-1-0.75133-17, 2008.
- 3. D.Y. Tzou, Macro- to Microscale Heat Transfer. The Lagging Behavior, Taylor and Francis, Oxfordshire, UK, 1997.
- 4. Z.M. Zhang, Nano/Microscale Heat Transfer, McGraw-Hill, New York, 2007.
- 5. A.N. Smith, P.M. Norris, [in:] Heat Transfer Handbook, Adrian Bejan [ed.], John Wiley & Sons, Hoboken, pp. 1309–1409, 2003.
- 6. G. Chen, D. Borca-Tasciuc, R.G. Yang, [in:] Encyclopedia of Nanoscience and Nanotechnology; Hari Singh Nalwa [ed.], American Scientific Publishers: Stevenson Ranch, 7, 429–459, 2004.
- 7. S.L. Sobolev, Nonlocal two-temperature model: application to heat transport in metals irradiated by ultrashort laser pulses, International Journal of Heat and Mass Transfer, 94, 138–144, 2016.
- 8. M.A. Al-Nimr, Heat transfer mechanisms during short-duration laser heating of thin metal films, International Journal of Thermophysics, 18, 5, 1257–1268, 1997.
- 9. T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating of metals, Journal of Heat Transfer, 115, 835–841, 1993.
- 10. J.K. Chen, W.P. Latham, J.E. Beraun, The role of electron–phonon coupling in ultrafast laser heating, Journal of Laser Applications, 17, 1, 63–68, 2005.
- 11. J.K. Chen, D.Y. Tzou, J.E. Beraun, A semiclassical two-temperature model for ultrafast laser heating, International Journal of Heat and Mass Transfer, 49, 307–316, 2006.
- 12. H. Wang, W. Dai, R. Melnik, A finite difference method for studying thermal deformation in a double-layered thin film exposed to ultrashort pulsed lasers, International Journal of Thermal Sciences, 45, 1179–1196, 2006.
- 13. T. Niu, W. Dai, A hyperbolic two-step model based finite difference scheme for studying thermal deformation in a double-layered thin film exposed to ultrashort-pulsed lasers, International Journal of Thermal Sciences, 48, 1, 34–49, 2009.
- 14. K. Baheti, J. Huang, J.K. Chen, Y. Zhang, An axisymmetric interfacial tracking model for melting and resolidification in a thin metal film irradiated by ultrashort pulse lasers, International Journal of Thermal Sciences, 50, 25–35, 2011.
- 15. J. Dziatkiewicz, W. Kus, E. Majchrzak, T. Burczynski, L. Turchan, Bioin spired identification of parameters in microscale heat transfer, International Journal for Multiscale Computational Engineering, 12, 1, 79–89, 2014.
- 16. E. Majchrzak, J. Dziatkiewicz, Analysis of ultrashort laser pulse interactions with metal films using a two-temperature model, Journal of Applied Mathematics and Computational Mechanics, 14, 2, 31–39, 2015.
- 17. W. Kus, J. Dziatkiewicz, Multicriteria identification of parameters in microscale heat transfer, International Journal of Numerical Methods for Heat & Fluid Flow, 27, 3, 587– 597, 2017.
- 18. E. Majchrzak, J. Dziatkiewicz, L. Turchan, Analysis of thermal processes occurring in the microdomain subjected to the ultrashort laser pulse using the axisymmetric two- temperature model, International Journal for Multiscale Computational Engineering, 15, 5, 395–411, 2017.
- 19. J.K. Chen, J.E. Beraun, Numerical study of ultrashort laser pulse interactions with metal films, Numerical Heat Transfer, Part A, 40, 1–20, 2001.
- 20. A. Sellitto, V.A. Cimmelli, D. Jou, Nonequilibrium thermodynamics and heat transport at nanoscale, [in:] Mesoscopic Theories of Heat Transport in Nanosystems, pp. 1–30, Springer International Publishing, Lausanne, 2016.
- 21. R. Kovács, P. Ván, Generalized heat conduction in heat pulse experiments, International Journal of Heat and Mass Transfer, 83, 613–620, 2015.
- 22. W. Dreyer, H. Struchtrup, Heat pulse experiments revisited, Continuum Mechanics and Thermodynamics, 5, 3–50, 1993.
- 23. I. Müller, T. Ruggeri, Rational Extended Thermodynamics, Springer, Oklahoma, 1998.
- 24. S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction, International Journal of Heat and Mass Transfer, 78, 58–63, 2014.
- 25. S.A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction: higher-order approximations, International Journal of Thermal Sciences, 113, 83–88, 2017.
- 26. M. Fabrizio, B. Lazzari, V. Tibullo, Stability and thermodynamic restrictions for a dual phase-lag thermal model, Journal of Non-Equilibrium Thermodynamics, 42, 3, 243–252, 2017.
- 27. R. Kovács, P. Ván, Thermodynamical consistency of the dual-phase-lag heat conduction equation, Continuum Mechanics and Thermodynamics, 30, 6, 1223–1230, 2017.
- 28. M. Fabrizio, F. Franchi, Delayed thermal models: stability and thermodynamics, Journal of Thermal Stresses, 37, 2, 160–173, 2014.
- 29. R. Quintanilla, R. Racke, Qualitative aspects in dual-phase-lag heat conduction, Proceedings of the Royal Society of London, A: Mathematical, Physical and Engineering Sciences, 463, 2079, 659–674, 2007.
- 30. Á. Rieth, R. Kovács, T. Fülöp, Implicit numerical schemes for generalized heat conduction equations, International Journal of Heat and Mass Transfer, 126, 1177–1182, 2018.
- 31. E. Kannattey-Asibu Jr., Principles of laser materials processing, John Wiley & Sons, Inc., Hoboken, New Jersey, 2009.
- 32. M. Saghebfar, M.K. Tehrani, S.M.R. Darbani, A.E. Majd, Femtosecond pulse laser ablation of chromium: experimental results and two-temperature model simulations, Applied Physics A, 123, 28, 1–10, 2017.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-670a00d0-2798-4e94-9650-bea6484d9607