PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanism of the combined effects of air rate and froth depth on entrainment factor in copper flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of air rate and froth depth on the entrainment factor in flotation has been extensively studied, but further investigation on the underlying mechanism for their effect is still required. In this study, flotation tests were performed at different air rates and froth depths in a 3 dm3 continuously operated cell using an artificial copper ore. The results showed that entrainment factor was affected by both air rate and froth depth, and the combined effect of these variables on entrainment factor depended strongly on the particle size. The entrainment factor increased with either increasing air rate at a relatively shallow froth or decreasing froth depth at a relatively high air rate. At a very low air rate and deep froth, higher entrainment factor was observed for mid-size and coarse particles. When the entrainment factor was correlated to the effective liquid velocity at the pulp/froth interface, the results indicated that multiple mechanisms were responsible for the effect on entrainment factor. At a relatively high air rate and shallow froth depth, entrainment factor had a linear relationship with the interface effective liquid velocity, suggesting that drag force dominated the change in the entrainment factor when air rate and froth depth were varied. At a very low air rate and deep froth, the entrainment factor for fine particles was found to correlate strongly with the interface effective liquid velocity, while the entrapment of solid particles may be the main reason for the high entrainment factor for mid-size and coarse particles under this condition.
Słowa kluczowe
Rocznik
Strony
43--53
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • National Engineering Research Centre of Coal Preparation and Purification, China University of Mining and Technology, China
autor
  • National Engineering Research Centre of Coal Preparation and Purification, China University of Mining and Technology, China
autor
  • National Engineering Research Centre of Coal Preparation and Purification, China University of Mining and Technology, China
Bibliografia
  • AKTAS, Z., CILLIERS, J.J., BANFORD, A.W., 2008. Dynamic froth stability: Particle size, airflow rate and conditioning time effects. Int. J. Miner. Process. 87, 65-71.
  • ATA, S., AHMED, N., JAMESON, G.J., 2004. The effect of hydrophobicity on the drainage of gangue minerals in flotation froths. Miner. Eng. 17, 897-901.
  • BISSHOP, J.P., WHITE, M.E., 1976. Study of particle entrainment in flotation froth. Trans. Inst. Min. Metall. C85, 191- 194.
  • CUTTING, G.W., WATSON, D., WHITEHEAD, A., BARBER, S.P., 1981. Froth structure in continuous flotation cells: Relation to the prediction of plant performance from laboratory data using process models. Int. J. Miner. Process. 7, 347- 369.
  • ELGER, D.F., WILLIAMS, B.C., CROWE, C.T., ROBERSON, J.A. Engineering Fluid Mechanics. John Wiley & Sons, Inc, the USA.
  • ENGELBRECHT, J.A., WOODBURN, E.T., 1975. The effect of froth height, aeration rate and gas precipitation on flotation. J. South Afr. Inst. Min. Metall. 76, 125-132.
  • JOHNSON, N.W., 1972. The flotation behaviour of some chalcopyrite ores. PhD Thesis, The University of Queensland, Brisbane, Australia.
  • KRACHT, W., OROZCO, Y., ACUNA, C., 2016. Effect of surfactant type on the entrainment factor and selectivity of flotation at laboratory scale. Miner. Eng. 92, 216-220.
  • LANGBERG, D.E., JAMESON, G.J., 1989. Factors affecting the water recovery rate during froth flotation. Chemeca 89:Technology for Our Third Century; the Seventeenth Australasian Chemical Engineering Conference, Gold Coast, Australasian Chemical Engineering Conference, 295–301.
  • LYNCH, A.J., JOHNSON, N.W., MANLAPIG, E.V., THORNE, C., 1981. Mineral and Coal Flotation Circuits. Elsevier:Amsterdam.
  • MAACHAR, A., DOBBY, G.S., 1992. Measurement of feed water recovery and entrainment solids recovery in flotation columns. Can. Metall. Quart. 31, 167-172.
  • NEETHLING, S.J., CILLIERS, J.J., 2002a. The entrainment of gangue into a flotation froth. Int. J. Miner. Process. 64, 123-134.
  • NEETHLING, S.J., CILLIERS, J.J., 2002b. Solid motion in foams. Chem. Eng. Sci. 57, 607-615.
  • NEETHLING, S.J., CILLIERS, J.J., 2009. The entrainment factor in froth flotation: Model for particle size and other operating parameter effects. Int. J. Miner. Process. 93, 141-148.
  • NELSON, M.G., LELINSKI, D., 2000. Hydrodynamic design of self-aerating flotation machines. Miner. Eng. 13, 991-998.
  • NGUYEN, A.V., SCHULZE, H.J., 2004. Colloidal Science of Flotation. Marcel Dekker Inc.: New York.
  • ROSS, V.E, VAN DEVENTER, J.S.J., 1988. Mass transport in flotation column froths. Column Flotation'88: Proceedings of an International Symposium SME-AIME Annual Meeting, Phoenix, Arizona, 129-39.
  • SAVASSI, O.N., ALEXANDER, D.J., FRANZIDIS, J.P., MANLAPIG, E.V., 1998. An empirical model for entrainment in industrial flotation plants. Miner. Eng. 11, 243-256.
  • SMITH, P.G., WARREN, L.J., 1989. Entrainment of particles into flotation froths. Miner. Process. Extra. M. 5, 123-145.
  • SZATKOWSKI, M., 1987. Factors influencing behaviour of flotation froth. Inst. Min. Metall. Trans. Sect. C. Miner. Process. Extract. Metall. 96, 115-112.
  • WANG, L., 2017. Entrainment of fine particles in froth flotation. PhD thesis, The University of Queensland, Brisbane, Australia.
  • WANG, L., PENG, Y., RUNGE, K., 2016a. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technol. 288, 202-211.
  • WANG, L., RUNGE, K., PENG, Y., VOS, C., 2016b. An empirical model for the degree of entrainment in froth flotation based on particle size and density. Miner. Eng. 98, 187-193.
  • WANG, L., RUNGE, K., PENG, Y., 2016c. The observed effect of flotation operating conditions and particle properties on water recovery at laboratory scale. Miner. Eng. 94, 83-93.
  • WANG, L., PENG, Y., RUNGE, K., 2017. The mechanism responsible for the effect of frothers on the degree of entrainment in laboratory batch flotation. Miner. Eng. 100, 124-131.
  • YIANATOS, J., BERGH, L., CONDORI, P., AGUILERA, J., 2001. Hydrodynamic and metallurgical characterization of industrial flotation banks for control purposes. Miner. Eng. 14, 1033-1046.
  • YIANATOS, J., CONTRERAS, F., 2010. Particle entrainment model for industrial flotation cells. Powder Technol. 197, 260-267.
  • ZHENG, X., FRANZIDIS, J.P., JOHNSON, N.W., MANLAPIG, E.V., 2005. Modelling of entrainment in industrial flotation cells: The effect of solids suspension. Miner. Eng. 18, 51-58.
  • ZHENG, X., FRANZIDIS, J.P., JOHNSON, N.W., 2006a. An evaluation of different models of water recovery in flotation. Miner. Eng. 19, 871–882.
  • ZHENG, X., JOHNSON, N.W., FRANZIDIS, J.P., 2006b. Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Miner. Eng. 19, 1191-1203.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6707dfc8-99d1-4ecc-889c-82d24cf0695d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.