PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of (2E)-3,7-dimethyl-2,6-octadien-l-ol (geraniol) transformation process parameters using Response Surface Method (RSM)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of studies on the transformation of geraniol (GA) in the presence of the natural mineral bentonite. The paper determines the influence of temperature, catalyst content, and reaction time on the course of the process. In order to determine the most favorable process conditions, the catalytic tests were carried out without solvent and under atmospheric pressure. Three functions were chosen to determine the most favorable process conditions: GA conversion and the selectivities of the main products: linalool – LO and beta-pinene – BP. In addition, the paper optimize GA transformation process based on response surface methodology (RSM). The impact of the most relevant process indicators was presented. For all factors of the method, their effects on all primary parameters were determined in the form of second-degree polynomials, and such process conditions were determined to achieve their maximum.
Słowa kluczowe
Rocznik
Strony
24--38
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wz.
Twórcy
  • Jacob of Paradies University, Faculty of Technology, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering, Szczecin
Bibliografia
  • 1. Liu, J.H. & Yu, B.Y. (2010). Biotransformation of bio-active natural products for pharmaceutical lead compounds. Curr. Org. Chem. 14, 1400–1406.
  • 2. Bieda, A., Wróblewska, A., & Miądlicki, P. (2019). Właściwości lecznicze geraniolu–przegląd piśmiennictwa. Pomer. J. Life Sci. 65(1) (in Polish).
  • 3. Burt, S. (2004). Essential oils: Their antibacterial properties and potential applications in foods – a review. Int. J. Food Microbiol. 94(3), 223–253. DOI:10.1016/j.ijfoodmicro.2004.03.022.
  • 4. Nowak, G. & Nawrot, J. (2009). Surowce roślinne i związki naturalne stosowane w chorobach układu oddechowego. Herba Polonica, 55(4),178–213 (in Polish).
  • 5. Stevensen, C.J. (1998). Aromatherapy in dermatology. Clin Dermatol, 16(6),689–694.
  • 6. Bakkali, F., Averbeck, S., Averbeck, D. & Idaomar, M. (2008). Biological effect of essentials oils – a review, Food Chem. Toxicol. 46(2), 446–475. DOI: 10.1016/j.fct.2007.09.106.
  • 7. Fajdek-Bieda, A., Wróblewska, A., Miądlicki, P., Szymańska, A., Dzięcioł, M. Booth & A.M., Michalkiewicz, B. (2020). Influence of Technological Parameters on the Isomerization of Geraniol Using Sepiolite. Catal Lett, 150, 901–911, DOI: 10.1007/s10562-019-02987-1.
  • 8. Fajdek-Bieda, A., Wróblewska, A., Miądlicki, P., Tołpa, J., & Michalkiewicz, B. (2021). Clinoptilolite as a Natural, Active Zeolite Catalyst for the Chemical Transformations of Geraniol. Reac Kinet Mech Cat, 133, 997–1011, DOI:10.1007/s11144-021-02027-3.
  • 9. Fajdek-Bieda, A., Wróblewska, A., Miądlicki, P. & Konstanciak, A. (2022). Conversion of Geraniol into Useful Value-Added Products in the Presence of Catalysts of Natural Origin: Diatomite and Alum. Materials, 26;15(7), 2449. DOI: 10.3390/ma15072449. PMID: 35407782.MCID: PMC9000025.
  • 10. Fajdek-Bieda, A., Wróblewska, A., Perec, A. & Miądlicki, P. (2023). Green method of conversion of geraniol to value-added products in the presence of selected minerals. Polish J. Chem. Technol., 25, 47–60, DOI: 10.2478/pjct-2023-0008.
  • 11. Murray, Haydn, H. (2006). Bentonite applications. Developments in Clay Science, 2, 111–130.
  • 12. Zhang, Y. (2012). Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure. J. Environ. Sci., 24, 1525–1532.
  • 13. Borah, D., Nath, H., & Saikia, H. (2022). Modification of bentonite clay & its applications: a review. Rev. Inorganic Chem. 42(3), 265–282.
  • 14. Murray, H.H. (2006). Chapter 6 Bentonite Applications. Applied Clay Mineralogy – Occurrences, Processing and Application of Kaolins, Bentonites, Palygorskite-Sepiolite, and Common Clays, 111–130. DOI: 10.1016/s1572-4352(06)02006-x.
  • 15. Eisenhour, D.D. & Brown, R.K. (2009). Bentonite and Its Impact on Modern Life. Elements, 5(2), 83–88. DOI: 10.2113/gselements.5.2.83.
  • 16. Tabak, A., Afsin, B., Caglar, B. & Koksal, E. (2007). Characterization and pillaring of a Turkish bentonite (Resadiye). J. Colloid Interf. Sci. 313(1), 5–11. DOI: 10.1016/j.jcis.2007.02.086.
  • 17. Bezerra, M.A., Santelli, R.E., Oliveira, E.P., Villar, L.S. & Escaleira, L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. DOI: 10.1016/j.talanta.2008.05.019.
  • 18. Bogucki, M. (2009). Optymalizacja jednokryterialna. Model jednoczynnikowy. Motrol, 11, 22–30 (in Polish).
  • 19. Huang, W., Li, Z., Niu, H., Li, D. & Zhang, J. (2008). Optimization of operating parameters for supercritical carbon dioxide extraction of lycopene by response surface methodology. J. Food Eng. 89(3), 298–302.
  • 20. Lee, W.C., Yusof, S., Hamid, N.S.A. & Baharin, B.S. (2006). Optimizing conditions for hot water extraction of banana juice using response surface methodology (RSM). J. Food Eng. 75(4), 473–479.
  • 21. Silva, E.M., Rogez, H. & Larondelle, Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 55, 381–387.
  • 22. Silva, E.M., Rogez, H. & Larondelle, Y. (2007). Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 55, 381–387.
  • 23. Liyana-Pathirana, Ch. & Shahidi, F. (2005). Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93, 47–56, DOI: 10.1016/j.foodchem.2004.08.050.
  • 24. Le Thanh-Blicharz, J., Białas, W. & Lewandowicz, G. (2009). Response surface optimization of manufacturing of dietary starch products. Acta Sci. Pol. 8(4), 51–62.
  • 25. Białas, W. (2009). Optymalizacja procesu jednoczesnej hydrolizy i fermentacji natywnej skrobi metodą powierzchni odpowiedzi. Biotechnol. 87, 183–199 (in Polish).
  • 26. Mao, Y., Wen, S., Deng, J. & Fang, F., (2015). Mode-lowanie powierzchni odpowiedzi i optymalizacja parametrów procesu ługowania rudy tlenku cynku roztworami amoniaku i wodorowęglanu amonu z następczą flotacją. Prz. Chem. 94(7) 1086–1094 (in Polish).
  • 27. Kałuża, M. & Sadowski, Z. (2013). Optymalizacja bioprodukcji kwasu cytrynowego w hodowli wgłębnej Aspergillusniger prowadzonych w obecności Tweenu 80. Inż. Apar. Chem (in Polish).
  • 28. Zhirong, L., Azhar Uddin, M. & Zhanxue, S. (2011). FTIR and XRD analysis of natural Na-bentonite and Cu(II)-loaded Na-bentonite. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 79(5), 1013–1016. DOI: 10.1016/j.saa.2011.04.013.
  • 29. Atkovska, K., Bliznakovska, B., Ruseska, G., Bogoevski, S., Boskovski, B. & Grozdanov, A. (2016). Adsorption of Fe(ii) and Zn(ii) ions from landfill leachate by natural bentonite, J. Chem. Technol. Metal. 51, 2, 215–222.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67044ee4-fcbc-4d84-9430-4c62bd67faa4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.