PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of an innovative trigger obtained by zonal appropriate annealing of the walls in a columnar passive energy absorber on the achieved crashworthiness indicators - experimental study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The crashworthiness indicators are a key parameter for assessing the effectiveness of energy absorbers and these in turn are highly dependent on the initial phase of the crumple process and triggering mechanism. In classical designs, indentations or holes are made at a specific location to improve the triggering performance, however, the effects are limited and often unsatisfactory. This paper proposes an innovative, original solution for a column energy absorber that significantly improves the triggering parameters and relies on the introduction of smooth changes in material properties along the column axis through the use of specially localized annealing and cooling with specific parameters in its manufacturing process. The veracity of the idea presented was warranted by an experiment from which the characteristics of crushing force vs. shortening were obtained, which in turn were used to calculate crashworthiness indicators. Results confirm extremely good energy-absorbing properties of the proposed solution compared to the classic ones.
Rocznik
Strony
art. no. 191692
Opis fizyczny
Bibliogr. 43 poz., fot., tab., wykr.
Twórcy
  • Machine Design and Mechatronics, Lublin University of Technology, Poland
Bibliografia
  • 1. Abbasi M, Reddy S, Ghafari-Nazari A, Fard M. Multiobjective crashworthiness optimization of multi-cornered thin-walled sheet metal members. Thin-Walled Structures 2015; 89: 31–41, https://doi.org/10.1016/j.tws.2014.12.009.
  • 2. Abramowicz W. Thin-walled structures as impact energy absorbers. Thin-Walled Structures, 2003; 41(2–3): 91–107, https://doi.org/10.1016/S0263-8231(02)00082-4.
  • 3. Alavi Nia A, Parsapour M. Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections. Thin-Walled Structures 2014; 74: 155–165, https://doi.org/10.1016/j.tws.2013.10.005.
  • 4. Alghamdi A A A. Collapsible impact energy absorbers: An overview. Thin-Walled Structures 2001. doi:10.1016/S0263-8231(00)00048-3, https://doi.org/10.1016/S0263-8231(00)00048-3.
  • 5. Ali M, Ohioma E, Kraft F, Alam K. Theoretical, numerical, and experimental study of dynamic axial crushing of thin walled pentagon and cross-shape tubes. Thin-Walled Structures 2015. doi:10.1016/j.tws.2015.04.007, https://doi.org/10.1016/j.tws.2015.04.007.
  • 6. Baroutaji A, Sajjia M, Olabi A G. On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments. Thin-Walled Structures 2017. doi:10.1016/j.tws.2017.05.018, https://doi.org/10.1016/j.tws.2017.05.018.
  • 7. Chen W, Wierzbicki T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-Walled Structures 2001. doi:10.1016/S0263-8231(01)00006-4, https://doi.org/10.1016/S0263-8231(01)00006-4.
  • 8. Chien W Y, Pan J, Friedman P A. Failure prediction of aluminum laser-welded blanks. International Journal of Damage Mechanics 2003; 12(3): 193–223, https://doi.org/10.1177/1056789503012003002.
  • 9. Deng X, Qin S, Huang J. Energy absorption characteristics of axially varying thickness lateral corrugated tubes under axial impact loading. Thin-Walled Structures 2021; 163(November 2020): 107721, https://doi.org/10.1016/j.tws.2021.107721.
  • 10. Fang J, Sun G, Qiu N et al. On design optimization for structural crashworthiness and its state of the art. Structural and Multidisciplinary Optimization 2017; 55(3): 1091–1119, https://doi.org/10.1007/s00158-016-1579-y.
  • 11. Ferdynus M, Gajewski J. Identification of crashworthiness indicators of column energy absorbers with triggers in the form of cylindrical embossing on the lateral edges using artificial neural networks. Eksploatacja i Niezawodnosc 2022; 24(4): 805–821, https://doi.org/10.17531/ein.2022.4.20.
  • 12. Ferdynus M, Rozylo P, Rogala M. Energy absorption capability of thin-walled prismatic aluminum tubes with spherical indentations. Materials 2020; 13(19): 1–19, https://doi.org/10.3390/ma13194304.
  • 13. Ferdynus M, Szklarek K, Kotełko M. Crashworthiness performance of thin-walled hollow and foam-filled prismatic frusta, Part 2: Experimental study. Thin-Walled Structures 2022; 181(September): 110070, https://doi.org/10.1016/j.tws.2022.110070.
  • 14. Gronostajski Z, Kaczyński P, Polak S, Bartczak B. Energy absorption of thin-walled profiles made of AZ31 magnesium alloy. Thin-Walled Structures 2018; 122(October 2017): 491–500, https://doi.org/10.1016/j.tws.2017.10.035.
  • 15. Hanssen A G, Hopperstad O S, Langseth M. Design of aluminium foam-filled crash boxes of square and circular cross-sections. International Journal of Crashworthiness 2001; 6(2): 177–188, https://doi.org/10.1533/cras.2001.0171.
  • 16. Hanssen A G, Langseth M, Hopperstad O S. Static and dynamic crushing of square aluminum extrusions with aluminum foam filler. International Journal of Impact Engineering 2000. doi:10.1016/S0734-743X(99)00169-4, https://doi.org/10.1016/S0734-743X(99)00169-4.
  • 17. Jafarzadeh-Aghdam N, Schröder K U. Mechanism of reproducible axial impact of square crash boxes. Thin-Walled Structures 2022; 176(February): 109062, https://doi.org/10.1016/j.tws.2022.109062.
  • 18. Jandaghi Shahi V, Marzbanrad J. Analytical and experimental studies on quasi-static axial crush behavior of thin-walled tailor-made aluminum tubes. Thin-Walled Structures 2012; 60: 24–37, https://doi.org/10.1016/j.tws.2012.05.015.
  • 19. Jaśkiewicz M. Evaluation of the Reliability of the Shoulder and Knee Joint of the KPSIT C50 Dummy Adapted to Crash tests carried out at low speeds. Eksploatacja i Niezawodnosc 2024; 26(1): 0–2, https://doi.org/10.17531/ein/178376.
  • 20. Jones N. Structural Impact. 1990. doi:10.1017/cbo9780511624285, https://doi.org/10.1017/cbo9780511624285.
  • 21. Karagiozova D, Jones N. Dynamic buckling of elastic-plastic square tubes under axial impact - II: Structural response. International Journal of Impact Engineering 2004; 30(2): 167–192, https://doi.org/10.1016/S0734-743X(03)00062-9.
  • 22. Kotełko M, Ferdynus M, Jankowski J. Energy absorbing effectiveness- different approaches. Acta Mechanica et Automatica 2018; 12: 54–59.
  • 23. Kozłowski E, Borucka A, Oleszczuk P, Jałowiec T. Evaluation of the maintenance system readiness using the semi-Markov model taking into account hidden factors. Eksploatacja i Niezawodnosc 2023; 25(4): 0–2, https://doi.org/10.17531/ein/172857.
  • 24. Langseth M, Hopperstad O S. Static and dynamic axial crushing of square thin-walled aluminium extrusions. International Journal of Impact Engineering 1996. doi:10.1016/s0734-743x(96)00025-5, https://doi.org/10.1016/s0734-743x(96)00025-5.
  • 25. Lee S, Hahn C, Rhee M, Oh J E. Effect of triggering on the energy absorption capacity of axially compressed aluminum tubes. Materials and Design 1999; 20(1): 31–40, https://doi.org/10.1016/s0261-3069(98)00043-0.
  • 26. M.Rogala, J.Gajewski, M.Ferdynus. The Effect of Geometrical Non-Linearity on the Crashworthiness of Thin-Walled Conical Energy-Absorbers. Materials 2020. doi:10.3390/ma13214857, https://doi.org/10.3390/ma13214857.
  • 27. Merklein M, Böhm W, Lechner M. Tailoring Material Properties of Aluminum by Local Laser Heat Treatment. Physics Procedia 2012; 39: 232–239, https://doi.org/10.1016/j.phpro.2012.10.034.
  • 28. Merklein M, Johannes M, Lechner M, Kuppert A. A review on tailored blanks - Production, applications and evaluation. Journal of Materials Processing Technology 2014; 214(2): 151–164, https://doi.org/10.1016/j.jmatprotec.2013.08.015.
  • 29. Nia A A, Hamedani J H. Comparative analysis of energy absorption and deformations of thin walled tubes with various section geometries. Thin-Walled Structures 2010. doi:10.1016/j.tws.2010.07.003, https://doi.org/10.1016/j.tws.2010.07.003.
  • 30. Peixinho N, Soares D, Vilarinho C et al. Experimental study of impact energy absorption in aluminium square tubes with thermal triggers. Materials Research 2012; 15(2): 323–332, https://doi.org/10.1590/S1516-14392012005000011.
  • 31. Ptak M, Wilhelm J, Sawicki M et al. Assessment of child safety on bicycles in baby carriers – The importance of evaluating both head and neck injuries. Journal of Safety Research 2023; 85(78): 254–265, https://doi.org/10.1016/j.jsr.2023.02.009.
  • 32. Rai V, Ghasemnejad H, Watson J W et al. Developed trigger mechanisms to improve crush force efficiency of aluminium tubes. Engineering Structures 2019; 199(April): 109620, https://doi.org/10.1016/j.engstruct.2019.109620.
  • 33. Reddy S, Abbasi M, Fard M. Multi-cornered thin-walled sheet metal members for enhanced crashworthiness and occupant protection. Thin-Walled Structures 2015. doi:10.1016/j.tws.2015.03.029, https://doi.org/10.1016/j.tws.2015.03.029.
  • 34. Shakeri H R, Buste A, Worswick M J et al. Study of damage initiation and fracture in aluminum tailor welded blanks made via different welding techniques. Journal of Light Metals 2002; 2(2): 95–110, https://doi.org/https://doi.org/10.1016/S1471-5317(02)00028-7.
  • 35. Sharifi S, Shakeri M, Fakhari H E, Bodaghi M. Experimental investigation of bitubal circular energy absorbers under quasi-static axial load. Thin-Walled Structures 2015. doi:10.1016/j.tws.2014.12.008, https://doi.org/10.1016/j.tws.2014.12.008.
  • 36. Xu F. Enhancing material efficiency of energy absorbers through graded thickness structures. Thin-Walled Structures 2015; 97: 250–265, https://doi.org/10.1016/j.tws.2015.09.020.
  • 37. Xu F, Zhang X, Zhang H. A review on functionally graded structures and materials for energy absorption. Engineering Structures 2018; 171(February): 309–325, https://doi.org/10.1016/j.engstruct.2018.05.094.
  • 38. Yao R, Pang T, Zhang B et al. On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects. Thin-Walled Structures 2023; 189(February): 110734, https://doi.org/10.1016/j.tws.2023.110734.
  • 39. Ying L, Wang S, Gao T et al. Crashworthiness analysis and optimization of multi-functional gradient foam-aluminum filled hierarchical thin-walled structures. Thin-Walled Structures 2023; 189(February): 110906, https://doi.org/10.1016/j.tws.2023.110906.
  • 40. Yuen S C K, Nurick G N. The energy-absorbing characteristics of tubular structures with geometric and material modifications: An overview. Applied Mechanics Reviews 2008; 61(1–6): 0208021–02080215, https://doi.org/10.1115/1.2885138.
  • 41. Zhang X, Cheng G, Wang B, Zhang H. Optimum design for energy absorption of bitubal hexagonal columns with honeycomb core. International Journal of Crashworthiness 2008; 13(1): 99–107, https://doi.org/10.1080/13588260701731732.
  • 42. Zhang X, Cheng G, Zhang H. Numerical investigations on a new type of energy-absorbing structure based on free inversion of tubes. International Journal of Mechanical Sciences 2009; 51(1): 64–76, https://doi.org/10.1016/j.ijmecsci.2008.11.001.
  • 43. Zhang X, Zhang H, Wen Z. Axial crushing of tapered circular tubes with graded thickness. International Journal of Mechanical Sciences 2015. doi:10.1016/j.ijmecsci.2014.11.022, https://doi.org/10.1016/j.ijmecsci.2014.11.022.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6702fa46-7875-47ad-bc9b-5e39414ad9a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.