Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Technika sztucznych sieci neuronowych do szacowania parametrów modułu słonecznego z amorficznego krzemu
Języki publikacji
Abstrakty
To conduct exact performance investigations and control studies on solar PV systems, it is necessary to extract relevant circuit model characteristics. In this work, we have proposed for the identification of the parameters of the single-diode model of the amorphous PV module, a numerical modeling approach presented by the determinist based on the “Levenberg–Marquardt (LM)” gradient descent, combined with the intelligent method based on artificial neural networks (ANN) taking into account the variation of the solar radiation and the temperature of the cell, in real working conditions.
Aby przeprowadzić dokładne badania wydajności i badania kontrolne systemów fotowoltaicznych, konieczne jest wyodrębnienie odpowiednich charakterystyk modelu obwodu. W pracy tej zaproponowaliśmy do identyfikacji parametrów modelu jednodiodowego amorficznego modułu PV podejście modelowania numerycznego zaprezentowane przez deterministę w oparciu o opadanie gradientowe „Levenberga-Marquardta (LM)” w połączeniu z inteligentna metoda oparta na sztucznych sieciach neuronowych (ANN) uwzględniająca zmienność promieniowania słonecznego i temperatury ogniwa w rzeczywistych warunkach pracy.
Wydawca
Czasopismo
Rocznik
Tom
Strony
158--163
Opis fizyczny
Bibliogr25 poz., rys., tab.
Twórcy
autor
- Department of Material Sciences, Faculty of Material Sciences, Mathematics and Computer Science, University of Ahmed Draia, Adrar, Algeria
- Laboratory of Energy, Environment and Systems of Information (LEESI), University Ahmed Draia Adrar, Algeria
autor
- Sustainable Development and Information Laboratory (LDDI), Faculty of Sciences and Technology, Ahmed DRAIA University, Adrar, Algeria
autor
- Laboratory of Energy, Environment and Systems of Information (LEESI), University Ahmed Draia Adrar, Algeria
autor
- Unit of Renewable Energy Research in the Saharan Environment (URERMS), Center of Renewable Energy Development (CDER), 01000 Adrar, Algeri
Bibliografia
- [1] Ghaitaoui Touhami, Laribi Slimane, Arama Fatima Zohra, Benabdelkrim Bouchra. Evaluation experimental of the impact of Saharan climate conditions on the infinity organic photovoltaic module performance, Australian Journal of Electrical and Electronics Engineering, 20(2022), 95-105.
- [2] B. Benabdelkrim, T. Ghaitaoui, A. Benattilah. Performance Assessment of Grid-Connected Photovoltaic Plant in the Desert Environment of Southern Algeria (Adrar). In: Hatti, M. (eds) Artificial Intelligence and Heuristics for Smart Energy Efficiency in Smart Cities. IC-AIRES 2021. Lecture Notes in Networks and Systems. Springer, Cham, 361(2022), 322- 331.
- [3] Vandana Jha, Uday Shankar Triar. An Improved Generalized Method for Evaluation of Parameters, Modeling, and Simulation of Photovoltaic Modules. International Journal of Photoenergy, 2017(2017).
- [4] M. A. Abido and M. S. Khalid, Seven-parameter PV model estimation using differential evolution, Electr. Eng, 100 (2018), 971-981.
- [5] B. Benabdelkrim, A. Benatillah, T. Ghaitaoui. Evaluation and Extraction of Electrical Parameters of Different Photovoltaic Models Using Iterative Methods. JOURNAL OF NANO- AND ELECTRONIC PHYSICS, 11(2019), 05008-1-05008-7.
- [6] Mirza Qutab Baig, Hassan Abbas Khan, Syed Muhammad Ahsan. Evaluation of solar module equivalent models under real operating conditions—A review, J. Renewable and Sustainable Energy, 12 (2020), 012701-1-012701-13.
- [7] Vincenzo Stornelli, Mirco Muttillo, Tullio de Rubeis, Iole Nardi. A New Simplified Five-Parameter Estimation Method for Single-Diode Model of Photovoltaic Panels, Energies, 12 (2019), 1-20.
- [8] Sah CT, Noyce RN, Shockley W. Carrier generation and recombination in P–N junctions and P–N junction characteristics. Proc IRE, 45 (1957), 1228-1243.
- [9] A. Yahya-Khotbehsara, A. Shahhoseini, A fast modeling of the doublediode model for PV modules using combined analytical and numerical approach, Sol. Energy, 162 (2018), 403-409.
- [10] Hammaoui K., Hamouda M., Benabdelkrim B. Evaluation of Numerical Algorithms of a Single and Two Diodes Models. In: Hatti M. (eds) Artificial Intelligence in Renewable Energetic Systems. ICAIRES 2017. Lecture Notes in Networks and Systems, Springer, Cham, 35 (2018),499-510.
- [11] Elbaset AA, Ali H, Abd-El Sattar M. Novel seven-parameter model for photovoltaic modules. Sol Energy Mater Sol Cells, 130 (2014), 442-455.
- [12] Hejri M, Mokhtari H, Azizian MR, Ghandhari M, Soder L. On the parameter extraction of a five-parameter double-diode model of photovoltaic cells and modules. IEEE J Photovoltaics, 4 (2014), 915-923.
- [13] Benabdelkrim B, Benatillah A. Comparison of Different Extraction Methods for the Simulation of Thin-Film PV Module, In: Hatti M. (eds) Smart Energy Empowerment in Smart and Resilient Cities. ICAIRES2019. Lecture Notes in Networks and Systems, Springer, Cham, 102 (2020), 641-649.
- [14] Appelbaum J, Peled A. Parameters extraction of solar cells – a comparative examination of three methods. Sol Energy Mater Sol Cells, 122 (2014), 164-173.
- [15] Mohammed Yassine Dennai, Hamza Tedjini, Abdelfatah Nasri, Djamel Taibi. MPC controller of PV system based Three-Level NPC Inverter under different climatic conditions connected to the grid. Przegląd Elektrotechniczny, 97 (2021), 130-137
- [16] Chen, J.-F., Do, Q.H., Hsieh, H.-N. Training artificial neural networks by a hybrid pso-cs algorithm. Algorithms 8 (2015), 292-308.
- [17] T. Ghaitaoui, A. Benatiallah, H. Khachab, K. Koussa. Artificial neural network modelling and experimental verification of flexible organic tandem solar cell modules, Journal of Ovonic Research, 14 (2018), 79-91.
- [18] Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control, Signals Syst. 2 (1989), 303-314.
- [19] Heidari, A.A., Faris, H., Mirjalili, S., Aljarah, I., Mafarja, M. Ant Lion Optimizer: Theory, Literature Review, and Application in Multi-layer Perceptron Neural Networks, Springer International Publishing, Cham, 23 (2020).
- [20] Dkhichi F, Oukarfi B, Fakkar A, Belbounaguia N. Parameter identification of solar cell model using Levenberg-Marquardt algorithm combined with simulated annealing. Sol Energy, 110 (2014), 781-788.
- [21] Lourakis MI A. A Brief Description of the Levenberg Marquardt Algorithm Implemened by levmar. Technical Report, Institute of Computer Science, Foundation for Research and Technology - Hellas, (2005).
- [22] Lampton M. Damping-undamping strategies for the Levenberg-Marquardt nonlinear least-squares method. Comput Phys, 11(1997), 110-115.
- [23] Villalva MG, Gazoli JR, Filho ER. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans Power Electron, 20 (2009), 1198-1208.
- [24] Trishan esram ,Modeling and control of an alternating-current Photovoltaic module, Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, (2010).
- [25] Javier C, Santiago P, Marta V. On the analytical approach for modeling photovotaic systems behavior. J Power Sources, 24 (2014), 467-474.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-67014600-5622-4c42-a55b-fc640c4d6ede
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.