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Abstract: We present a new method for segmenting the corneal endothelial cells from mi-
croscopic images. It uses multiple active contours initialized by adaptive thresholding and
limited with their growing to not overlap. Thanks to the inherent characteristics of the active
contour both outcomes can be achieved: cell quantity and delimitation. The tool implement-
ing this approach is built within the MESA framework - an environment for developing and
evaluating segmentation techniques. The accuracy is estimated on the base of real micro-
scopic cell images segmented manually.
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1. Introduction and background

Cell segmentation, very important in many biomedical applications, is not a triv-
ial task. Many approaches to this problem have been proposed, but the most often
general techniques fail when applied to specific cell shapes and targeted methods
perform the best. One example are the corneal endothelial cells, which play impor-
tant role in the human visual mechanism and are of great interest for physicians [1].
The healthy cells have a characteristic regular hexagonal form (Fig. 1). With time
or in presence of pathologies their number drops and their shape deforms, so their
analysis can supply important diagnostic and monitoring information. Unfortunately,
their standard microscopic imaging does not always provide a good quality of im-
ages. Specifically, near the image borders the focus can be lost and the illumination
is not homogeneous. The noise is also present and the cell shape can be irregular.
Several dedicated approaches have been proposed to segment such the cells, apart
from the manual delineating. Vincent and Masters [2] firstly detect the cell centers by
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a dome extractor based on morphological grayscale reconstruction and then let the
marker-driven watershed segmentation to extract the binary (so unstructured) result.
Mahzoun at al. [3] focus on the cell edges, detecting them (including “tricorn” points)
with specially designed convolution filters. Then they complete the shapes with man-
ually initialized active contours, so the approach is not automatic but can provide the
cell structure. Sanchez-Marin [4] proposes a fully automatic method using the Gauss
low-pass filtering to remove the intensity gradient and also to close gaps in the cell
borders, then thresholding and skeletonization (to obtain the one-pixel wide net) fol-
lowed by some improvement (e.g. pruning) of the final cell structure. The result cells
can be smoothed with the active contour. The method seems sensitive to the scale
on the Gauss filtering stage. Khan et al. [5] apply the Frangi algorithm (originally
detecting vessels) to images filtered by consecutive low-pass Gauss filters in order to
track the cell borders. These borders are then improved by mathematical morphol-
ogy operations and finally thinned to get the one-pixel wide net. The result is not
structured - it consists of the border pixel collection. Bullet et al. [6] use composition
of four steps to automatically detect the cell contours: FFT band-pass filtering to re-
move the intensity information and noise, binarization with the mean value threshold,
watershed segmentation on the distance map and finally Voronoi diagram segmenta-
tion providing the final contours. All the above operations are performed within the
standard image processing tool — ImagelJ. The most recent work by Piorkowski and
Gronkowska-Serafin [1] proposes two approaches. Both of them analyze local con-
figurations of pixel levels in order to mark the border (intensity valley) between cells.
The detected contours are then improved with the mathematical morphology.

This work is organized as follows. The next section describes the proposed seg-
mentation methods in details and reveals some implementation aspects. Section 3.
presents the method evaluation on real images of the corneal endothelium cells. The
last section summarizes the article and proposes some ideas to improve the segmen-
tation.

2. Method

The proposed algorithm is composed of the four steps:

— preprocessing,

— binarization,

— detection of the cell center points,
— segmentation of the cell contours.

All of them are automatic and do not require an operator interaction. Each steps is
described in details in the following subsections.
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2.1 Preprocessing

Our input images are noisy (Fig. 1), what is often the case while analyzing the med-
ical data. The intensity levels of the cell bodies and borders are not constant, even
locally. To alleviate these problems we apply the Gauss low-pass convolution filter to
the raw images (as like it is common in many segmentation frameworks). This filter-
ing extends also the high gradient zones located on the cell borders and makes them
more “visible” to the active contours segmenting the final cell shapes.

2.2 Binarization

In order to distinguish the cell bodies (more intensive) from the cell borders (darker)
the most obvious solution is to use the thresholding technique. But as it has been
already mentioned above, the illumination of the input images is not equal in all the
image regions — one can observe the intensity gradient superimposed on the local
intensity distribution (Fig. 1). This artifact makes impossible to binarize the input
with the simple thresholding with one global threshold.

One of the possible to employ techniques that has been used in our work is the
adaptive thresholding. As the intensity variation coming from the varying illumina-
tion has very low frequency and can be neglected locally, the threshold is calculated
and used also locally. The entire image is divided on square regions and the mean
intensity values are calculated for all of them. For each such region its center pixel
is given the local threshold equal to the mean intensity of this region, incremented
by few levels to avoid detecting some ghost structures in more or less homogeneous
areas. The rest of pixels obtain their local threshold by simple linear interpolation.
Then for all the pixels in the loop: each one is marked “black”™ (cell body) if its in-
tensity is above its own local threshold and it is marked “white” (cell border) if the
intensity is below it. Example of such the binarization is presented Fig. 1.

2.3 Detection of the cell center points

The healthy corneal cells have they shape close to hexagonal, and even if it is not
ideal, it can be approximated by a circle. After the binarization the next loop (go-
ing also through all the pixels) tries to localize the biggest (locally) circular regions
containing only “black™ pixels. A special condition promotes bigger regions if two
or more of them overlap — it prevents from locating multiple circle regions inside
one cell what can happen because of the order of visiting the pixels (the loop simply
increments the pixel coordinates). This condition is effective for the most of cases
but it sometimes fails, especially for elongated cells. In order to eliminate such the
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Fig. 1. Example images of the corneal endothelial cells and effects of binarization by adaptive thresh-
olding (after the Gauss filtering)

situations all pairs of detected neighbor circles are examined to verify if the area sep-
arating them belongs also to the cell body (Fig. 2). If it is so the regions are merged
to form a single cell body representation.

Fig. 2. Merging neighbor circle regions inside a single cell

The effect of this procedure is shown on Fig. 3. One can observe several merged
circles inside elongated cells.

2.4 Final segmentation of the cell contours — active contours

The initial approximation of the cell bodies by the circular regions (or their unions)
are further deformed to fit the actual cell borders using the well known active con-
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Fig. 3. Comparison of the cell body detection: on the left before merging the neighbor circles, on the
right — after this procedure (colors are not corresponding on the two images)
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tours — snake [7]. We use here its discrete version where the evolving curve mini-
mizing its energy is represented by the collection of points given the local energy.
Each previously marked region defines (by its external points) the initial form of the
snake. All the snakes evolve on the original image with the full intensity range — its
binary form is used only for the initialization. We use three energies and one balloon
force (described below) that are applied to each potential (being examined) snake
point (snaxel) position. The following notation is used: p — examined position of the
snaxel, pprey and ppe. — neighbor snaxels (fixed while p is examined), vy, = W
and Ve = P Prext) — vectors from p to its neighbors.

1. Image energy given by:
Eimage(P) :I(p), (D

where I(p) is the intensity level in the p position. Since the cell borders are darker
(lower intensity), the snake tends to them.
2. Internal energies controlling the snake appearance:
— smoothness energy promoting the linear location of snaxels and expressed as
a length of sum of two normalized vectors v, and v,y (for the collinear
points it has its minimum equal to zero):

Vprev Vnext

Egnoothness (p ) = > (2)

| Vprev ‘ ’ Vhext |

— regularity energy favorizing the equal distance between all the snaxels and
expressed as the two square differences between a mean inter-snaxel distance
avg and the length of vectors v, and v, divided by the square avg:

2 2
avg — |Vpr + avg —|v
Eregularity(p) - ( ‘ d ev’)avg2< ’ next’) . (3)

3. Balloon force [8] responsible for pushing out the contours (initially located in-
side the cells). This force does not influence the p position optimization (with
the above energies) — instead it shifts all the examined neighborhood of p by a
VECtOr Vpaiioon perpendicular to the difference vyex — vprey and directed outward.
Its length is the method parameter.

Evolution of snakes The process of minimization of the snake energy is decomposed
on the separate snaxels — no global energy is formulated and for every snaxel p the
local energy E(p) = Eimage(P) + Esmootheness(P) + Ereguiariry(p) is analyzed indepen-
dently. In every iteration each snaxel neighborhood (shifted by vpai00n as described
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above) is examined and if a position with lower local energy is found — the snaxel
is moved there. Because there are multiple evolving contours on the image (one for
each cell) we impose a condition forbidding each snake to grow inside any other one.
To avoid the curve discretization problems two procedures are introduced to keep the
inter-snaxel distance reasonable (few pixels):

— each two neighbor snaxels too close one to another are replaced by a single one;
— if two neighbor snaxels are too distant one from another a new one is added in
the middle of them.

The evolution stops when there is no more moving snaxels (all snakes reached
their local optima). Two examples of automatic segmentations are given on Fig. 4.

Fig. 4. Examples of the automatic cell segmentation

2.5 Implementation issues

The entire method has been implemented within the MESA framework [9]. It helps
in designing and evaluating of new segmentations methods based on the deformable
models. Its on-line version is accessible (mesa.wi.pb.edu.pl) — however its desktop
version was used here (incorporation of the presented approach is planned). All the
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standard operations (e.g. image loading, visualization, segmentation procedure) are
offered there. The user is only responsible for defining the basic elements of his snake
(writing new Java classes). In this work all three custom components were used:

— model replacing the standard one since multiple contour evolves in the image
instead of the single one;

— energies defining the three ones as described in Section 2.4;

— extensions responsible for correcting the snake topology (adding and removing
snaxels).

The segmentation of a single image was of order of seconds (after some opti-
mization on controlling of the overlapping snakes) on a standard PC machine.

3. Experimental validation

Verification of quality of the medical image segmentation is not a trivial task. The
most important problem is usually lack of the ground truth location and shape of
the segmented object. A manual delineating by an expert can provide such a refer-
ence, but inter- and also intra-operator variabilities are very often significant. It is also
time-consuming and tedious. Nevertheless, this procedure is sometimes the only pos-
sibility to quantitatively asses the precision of the method. In our work this approach
was also selected and one of the authors (not being a medical expert) manually drew
the cell contours of two chosen images (Fig. 5 and 6). He took into account only well
visible cells. Then the presented method segmented the cells on the same images.
Both segmentations took 10 snake iterations.

Having such the reference we choose two segmentation quality indices (after

[10]):
— Overlap Error (OE)

OE(A,B) = 100(1 — (|ANB|/|AUB|)), )

where A and B are the pixel sets (in our work representing the cell bodies: seg-
mented by our method and manually marked by the operator), value O character-
izes two sets completely overlapping, value 100 — two separate sets;

— Relative Volume Difference (RVD)

RVD(A,B) = 100((|A| - |B|)/[B), ®)

A and B meaning as above, value 0 means that the two compared sets have the
same size (and says nothing about the set overlapping), negative value indicates
undersegmentation, positive one — oversegmentation.
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Fig. 5. Input image 1 (left), its manual segmentation — about 150 cells (center) compared with the
automatic segmentation (right)

These indices are defined to be used with a single segmented object. In our cases
there are multiple cells, so two problems are to be resolved. The first one is to find the
correspondence between cells in two such images. This is done by finding for each
reference cell an automatically segmented one with the highest overlapping ratio.
The second problem is to gives one value (or at least few ones) characterizing the
whole image and not separate values for each cell. So we give here: mean, median,
minimum and maximum values for every index. The results are presented in Tables 1
and 2. The value distributions are also presented Fig. 7 and 8.

Table 1. Overlap Error statistics for the two selected images

Image Median|Mean|Minimum|Maximum
Image 1 (150 cells)| 22.34 |24.92| 7.12 86.18
Image 2 (56 cells) | 22.41 |26.85| 7.79 71.47

As it can be observed, for the most of cases the cells are detected correctly.
However one can see also some problems:
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Fig. 6. Input image 2 (left), its manual segmentation — about 50 cells (center) compared with the auto-
matic segmentation (right)

Table 2. Relative Volume Difference statistics for the two selected images

Image Median|Mean|Minimum|Maximum
Image 1 (150 cells)| 29.76 (39.07| -48.83 | 363.83
Image 2 (56 cells) | 5.35 [35.25| -62.14 | 452.34
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Fig. 7. Overlap Error histograms for image 1 (left) and image 2 (right)
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Fig. 8. Relative Volume Difference histograms for image 1 (left) and image 2 (right)

— sometimes one cell is segmented as two separate contours;

— some contours do not reach the cell borders, stopping their evolution inside the
cells;

— some contours do not stop on the cell borders and they overpass them.

The first problem means that the detection of the cell centers does not work correctly
there, marking two separate circles inside one cell and not merging them. Since the
snake topology is fixed it results in two segmented cells inside the actual one. The
next two problems show how hard is to balance the snake energies. When the balloon
force is too weak (having too low weight in comparison to other forces, i.e. image
and internal ones) to push the snake enough to reach the border, the contour evolution
stops prematurely. But in the same time this weight is too high in other situations and
it pushes the contour too much what results in overpassing the border. This behavior
will be investigated more to improve the method.

The problems are reflected by the Overlapping Error values (especially the me-
dian and mean ones) what leaves a place to further working on the method. The
positive Relative Volume Error shows a slight oversegmentation, but it is not very
important.

In order to give even introductory comparison with other approaches (to be con-
tinued in future works) we took a single image from [1] and applied our method. The
results can be visually compared Fig. 9.

4. Conclusions and future works

In this article we have presented the automatic method segmenting the corneal en-
dothelial cells form microscopic images. The first results are promising, it detects
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Fig. 9. Comparison of the presented method and [1]: original image (first), our segmentation superim-
posed on the original image (second), binary result from [1] (third), two segmentations on one image
(fourth) - in gray common area, in black our segmentation, in white - [1].

even little visible cells and works quite fast (order of seconds on a standard machine).
The implementation, for the moment limited to the standalone version, is realized in
the technology (MESA environment) that allows an easy porting to the on-line web
application and can be make available for the public use.

However there is still some work that can be done here. The results have been
not yet seriously compared with the other existing methods and it is difficult to say
where our approach is between them in term of quality of segmentation. Only two
images (of rather good quality) was used to quantitatively assess the segmentation
accuracy and the tedious manual cell delineation was done by the non expert. The
parameter choice has not been extensively studied as well. Some of the parameters
seem not critical (the constant in the adaptive thresholding) but others (the weights
balancing the snake energies, especially the balloon one) have to be adjusted carefully
and even then fail in some configurations. An iterative incrementation of the balloon
force could solve the problems of not reaching some cell borders and overpassing
others in the same image.
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AUTOMATYCZNA SEGMENTACJA KOMOREK
SRDBELONKA ROGOWKI OKA PRZY POMOCY
AKTYWNYCH KONTUROW

Streszczenie: W artykule zaprezentowano autorska automatyczna metode segmentacji ko-
morek Srédbtonka rogéwki oka z obrazéw mikroskopowych. Metoda uzywa wielu aktyw-
nych konturéw zainicjalizowanych wewnatrz komérek za pomoca adaptacyjnego progowa-
nia i ograniczonych w swoim rozroscie tak, aby nie pokrywac si¢. Metoda zostat zaimple-
mentowana w Srodowisku MESA przeznaczonym do rozwoju i ewaluacji technik segmenta-
cji. Jako$¢ segmentacji zostata oszacowana na rzeczywistych obrazach mikroskopowych w
odniesieniu do rgcznie zaznaczonych konturéw komorek.

Stowa kluczowe: przetwarzanie obrazéw, segmentacja komoérek, aktywny kontur

Artykut zrealizowano w ramach pracy statutowej Politechniki Biatostockiej
nr S/W1/2/2013 oraz pracy nr W/W1/5/2014.
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