PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Continuous-curvature trajectory planning

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Continuous-curvature paths play an important role in the area of driving robots: as vehicles usually cannot change the steering angle in zero-time, real trajectories must not have discontinuities in the curvature profile. Typical continuous-curvature paths are thus built of straight lines, arcs and clothoids. Due to the geometric nature of clothoids, some questions in the area of trajectory planning are difficult the answer – usually we need approximations here. In this paper we describe a full approach for continuous-curvature trajectory planning for mobile robots – it covers a maneuver-based planning with Viterbi optimization and geometric approximations required to construct the respective clothoid trajectories.
Twórcy
autor
  • Faculty of Computer Science, Nuremberg Institute of Technology, Nuremberg, Germany
Bibliografia
  • [1] J. Barraquand, B. Langlois and J.-C. Latombe, “Numerical potential field techniques for robot path planning”, IEEE Transactions on Systems, Man, and Cybernetics, vol. 22, no. 2, 1992, 224–241, 10.1109/21.148426.
  • [2] J.-D. Boissonnat, A. Cerezo and J. Leblond, “A note on shortest paths in the plane subject to a constraint on the derivative of the curvature”, Research Report, Institut National de Recherche en Informatique et an Automatique, 1994.
  • [3] X.-N. Bui, J.-D. Boissonnat, P. Soueres and J.-P. Laumond, “Shortest path synthesis for Dubins non-holonomic robot”. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994, 2–7, 10.1109/ROBOT.1994.351019.
  • [4] H. Delingette, M. Hebert and K. Ikeuchi, “Trajectory generation with curvature constraint based on energy minimization”. In: Proceedings IROS ‘91: IEEE/RSJ International Workshop on Intelligent Robots and Systems ‘91, 1991, 206–211, 10.1109/IROS.1991.174451.
  • [5] L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents”, American Journal of Mathematics, vol. 79, no. 3, 1957, 497–516.
  • [6] S. Fleury, P. Soueres, J.-P. Laumond and R. Chatila, “Primitives for smoothing mobile robot trajectories”, IEEE Transactions on Robotics and Automation, vol. 11, no. 3, 1995, 441–448, 10.1109/70.388788.
  • [7] T. Gu and J. M. Dolan, “On-Road Motion Planning for Autonomous Vehicles”. In: C.-Y. Su, S. Rakheja and H. Liu (eds.), Intelligent Robotics and Applications, 2012, 588–597, 10.1007/978-3-642-33503-7_57.
  • [8] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli and S. Teller, “Anytime Motion Planning using the RRT*”. In: 2011 IEEE International Conference on Robotics and Automation, 2011, 1478–1483, 10.1109/ICRA.2011.5980479.
  • [9] J.-P. Laumond, P. E. Jacobs, M. Taïx and R. M. Murray, “A motion planner for nonholonomic mobile robots”, IEEE Transactions on Robotics and Automation, vol. 10, no. 5, 1994, 577–593, 10.1109/70.326564.
  • [10] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for Path Planning” , Research Report, Computer Science Department, Iowa State University, 1998.
  • [11] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning”, The International Journal of Robotics Research, vol. 20, no. 5, 2001, 378–400, 10.1177/02783640122067453.
  • [12] T.-C. Liang, J.-S. Liu, G.-T. Hung and Y.-Z. Chang, “Practical and flexible path planning for car-like mobile robot using maximal-curvature cubic spiral”, Robotics and Autonomous Systems, vol. 52, no. 4, 2005, 312–335, 10.1016/j.robot.2005.05.001.
  • [13] D. S. Meek and D. J. Walton, “A note on finding lothoids”, Journal of Computational and Applied Mathematics, vol. 170, no. 2, 2004, 433–453, 10.1016/j.cam.2003.12.047.
  • [14] D. S. Meek and D. J. Walton, “An arc spline approximation to a clothoid”, Journal of Computational and Applied Mathematics, vol. 170, no. 1, 2004, 59–77, 10.1016/j.cam.2003.12.038.
  • [15] M. Mukadam, X. Yan and B. Boots, “Gaussian Process Motion planning”. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, 9–15, 10.1109/ICRA.2016.7487091.
  • [16] V. Muñoz and A. Ollero, “Smooth Trajectory Planning Method for Mobile Robots”. In: Proc. of the Congress on Comp. Engineering in System Applications, Lille, France, 1995, 700–705.
  • [17] M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via search in state lattices”. In: Proceedings of 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS ‘05), 2005.
  • [18] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both forwards and backwards.”, Pacific Journal of Mathematics, vol. 145, no. 2, 1990, 367–393.
  • [19] J. Roth, “A Viterbi-like Approach for Trajectory Planning with Different Maneuvers”. In: M. Strand, R. Dillmann, E. Menegatti and S. Ghidoni (eds.), Intelligent Autonomous Systems 15, 2019, 3–14, 10.1007/978-3-030-01370-7_1.
  • [20] J. Roth, “Trajectory Regulation for Walking Multipod Robots”, International Journal on Advances in Systems and Measurements, vol. 12, no. 3 & 4, 2019, 265–278.
  • [21] J. Roth, “Robots in the Classroom: Mobile Robot Projects in Academic Teaching”. In: K.-H. Lüke, G. Eichler, C. Erfurth and G. Fahrnberger (eds.), Innovations for Community Services, 2019, 39–53, 10.1007/978-3-030-22482-0_4.
  • [22] A. Scheuer and T. Fraichard, “Continuous-curvature path planning for car-like vehicles”. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems (IROS ‘97), vol. 2, 1997, 997–1003, 10.1109/IROS.1997.655130.
  • [23] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm”, IEEE Transactions on Information Theory, vol. 13, no. 2, 1967, 260–269, 10.1109/TIT.1967.1054010.
  • [24] D. K. Wilde, “Computing clothoid segments for trajectory generation”. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009, 2440–2445, 10.1109/IROS.2009.5354700.
  • [25] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith, C. M. Dellin, J. A. Bagnell and S. S. Srinivasa, “CHOMP: Covariant Hamiltonian Optimization for Motion Planning”, The International Journal of Robotics Research, vol. 32, no. 9-10, 2013, 1164–1193, 10.1177/0278364913488805.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66fcea4a-a352-480f-b3e5-ef315fcb8f98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.