PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On reliable predicting risk and nature of thermal spalling in heated concrete

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal spalling is a deterioration phenomenon which is of fundamental importance during durability analysis of concrete structures exposed to high temperature, e.g. during a fire. To assess the risk of this damage mechanism for a real concrete structure, numerical simulations are usually applied since experimental tests are very costly. Some aspects related to predicting thermal spalling by means of numerical modelling of chemo-hygro-thermal and damage processes in heated concrete, are presented in this work. First, we propose a spalling index, validate it with some experimental results and show how it can be used in the quantitative assessment of spalling risk. Then, the results of numerical simulations of a slab, made of two types of concrete (NSC and HPC), heated with three different rates, are discussed from the energetic point of view in order to indicate the main physical causes and predict the nature of thermal spalling: slow, rapid or violent. The presented results allow to assess the contribution of energy due to constrained thermal strains and compressed pore gas into the thermal spalling for different types of concrete heated with different rates.
Rocznik
Strony
1219--1227
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
autor
  • Łódź University of Technology, Department of Building Physics and Building Materials, Al. Politechniki 6, 90-924 Łódź, Poland
autor
  • University of Padova, Department of Civil, Environmental and Architectural Engineering, via Marzolo 9, 35131 Padova, Italy
  • Ignia, Cl. Aragón 67, Ibiza, Baleares, Spain
Bibliografia
  • [1] Z.P. Bazant, M.F. Kaplan, Concrete at High Temperatures: Material Properties and Mathematical Models, Longman, Harlow, 1996.
  • [2] L.T. Phan, N.J. Carino, D. Duthinh, E. Garboczi (Eds.), Proceedings of International Workshop on Fire Performance of High-Strength Concrete, NIST Special Publication 919Gaitherburg (USA), 1997.
  • [3] T. Ring, M. Zeiml, R. Lackner, Underground concrete frame structures subjected to fire loading: Part I – Large-scale fire tests, Eng. Struct. 58 (2014) 175–187.
  • [4] C.T. Davie, C.J. Pearce, N. Bicanic, Coupled heat and moisture transport in concrete at elevated temperatures – effects of capillary pressure and adsorbed water, Numer. Heat Transf. 49 (2006) 733–763.
  • [5] C.T. Davie, C.J. Pearce, N. Bićanić, A fully generalised, coupled, multi-phase, hygro-thermo-mechanical model for concrete, Mater. Struct. 43 (Suppl. 1) (2010) 13–33.
  • [6] M.B. Dwaikat, V.K.R. Kodur, Hydrothermal model for predicting fire-induced spalling in concrete structural systems, Fire Saf. J. 44 (2009) 425–434.
  • [7] G.L. England, N. Khoylou, Moisture flow in concrete under steady state non-uniform temperature states: experimental Table 3 – Results of spalling analysis for the considered types of concrete and heating profiles. observations and theoretical modelling, Nucl. Eng. Des. 156 (1995) 83–107.
  • [8] D. Gawin, F. Pesavento, B.A. Schrefler, Modelling of hygrothermal behaviour and damage of concrete at temperature above critical point of water, Int. J. Numer. Anal. Methods Geomech. 26 (6) (2002) 537–562.
  • [9] D. Gawin, F. Pesavento, B.A. Schrefler, Modelling of thermochemical and mechanical damage of concrete at high temperature, Comput. Methods Appl. Mech. Eng. 192 (2003) 1731–1771.
  • [10] Y. Ichikawa, G.L. England, Prediction of moisture migration and pore pressure build-up in concrete at high temperatures, Nucl. Eng. Des. 228 (2004) 245–259.
  • [11] D. Gawin, F. Pesavento, B.A. Schrefler, Towards prediction of the thermal spalling risk through a multi-phase porous media model of concrete, Comput. Methods Appl. Mech. Eng. 195 (2006) 5707–5729.
  • [12] D. Gawin, F. Pesavento, An overview of modeling cement based materials at elevated temperatures with mechanics of multi-phase porous media, Fire Technol. 48 (2012) 753–793.
  • [13] F. Meftah, S. Dal Pont, Staggered finite volume modeling of transport phenomena in porous materials with convective boundary conditions, Transp. Porous Media 82 (2) (2010) 275–298.
  • [14] Y. Zhang, M. Zeiml, C. Pichler, R. Lackner, Model-based risk assessment of concrete spalling in tunnel linings under fire loading, Eng. Struct. 77 (2014) 207–215.
  • [15] G.A. Khoury, Y. Anderberg, Concrete Spalling Review, Fire Safety Design Report, Swedish National Road Administration, 2000.
  • [16] A.J. Breunese, J.H.H. Fellinger, Spalling of Concrete and Fire Protection of Concrete Structures, TNO Report, Netherlands Organisation for Applied Scientific Research, 2004.
  • [17] D. Gawin, F. Pesavento, B.A. Schrefler, Modelling of deformations of high strength concrete at elevated temperatures, Mater. Struct. 37 (268) (2004) 218–236.
  • [18] T. Gernay, A. Millard, J.-M. Franssen, A multiaxial constitutive model for concrete in the fire situation: theoretical formulation, Int. J. Solids Struct. 50 (22–23) (2013) 3659–3673.
  • [19] EN 1992-1-2:2004, Eurocode 2: Design of concrete structures - Part 1-2: General rules – Structural fire design.
  • [20] A. Witek, D. Gawin, F. Pesavento, B.A. Schrefler, Finite element analysis of variousmethods for protection of concrete structures against spalling during fire, Comput. Mech. 39 (2007) 271–292.
  • [21] W.G. Gray, C.T. Miller, Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview, Adv. Water Resour. 28 (2005) 161–180.
  • [22] C. de Sa, F. Benboudjema, Modeling of concrete nonlinear mechanical behavior at high temperatures with different damage-based approaches, Mater. Struct. 44 (8) (2011) 1411–1429.
  • [23] L.T. Phan, R.D. Peacock, Experimental Plan for Testing the Mechanical Properties of High-Strength Concrete at Elevated Temperature, Res. Report NISTIR 6210, National Institute of Standards and Technology, Building and Fire Research Laboratory, Gaithersburg, MD 20899, USA, 1999.
  • [24] EN 1991-1-2:2002., Eurocode 1, Part 1-2. Actions on Structures. General Actions. Actions on Structures Exposed to Fire, European Standard Organization, 2002.
  • [25] A.G. Castells, Contribution to the Advanced Analysis and Prevention of the Mechanisms of Natural Fire Induced Structural Collapse in High-rise Buildings, Ph.D. Thesis, Technical University of Catalonia, Barcelona (Spain), 2009.
  • [26] M. Zeiml, R. Lackner, H. Mang, Experimental insight into spalling behavior of concrete tunnel linings under fire loading, Acta Geotech. 3 (2008) 295–308.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66fae8f2-a8e0-415e-808a-98cdd516ed0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.