PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the percentage of reinforcement by un-stressed rebar on the deformability of pre-stressed RC beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the materials of deformability studies of pre-stressed steel-concrete beams reinforced with a package of reinforcement with different ratio of tape and rebar in the pure bending moment zone. The aim of the research was determination of the reinforcement percentage influence, for pre-stressed reinforced concrete beams reinforced with a package of reinforcement on their deformability. Also, the aim was to evaluate the effectiveness of using pre-stressed rebar in combined reinforcement. The practical significance of the experimental research is to study the deformability in pre-stressed bending elements with external tape and rebar reinforcement, taking into account the influence of different ratios of reinforcement areas within the combined reinforcement and development of proposals for such structures` calculation and design. The scientific novelty of the research is in obtaining the deformability characteristics of reinforced concrete beams reinforced with a package of reinforcement (tape and steel bars with periodic profile) with different ratios in the case of static loads` action.
Rocznik
Strony
212--216
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Lviv Polytechnic National University, 12 st. S. Bandera, Lviv, 79013, Ukraine
  • Czestochowa University of Technology, 69 st. Dabrowskiego, 42-201 Czestochowa, Poland
autor
  • Lviv Polytechnic National University, 12 st. S. Bandera, Lviv, 79013, Ukraine
autor
  • Lviv Polytechnic National University, 12 st. S. Bandera, Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, 12 st. S. Bandera, Lviv, 79013, Ukraine
Bibliografia
  • 1. Azizov, T.N., Kochkarev, D.V., Galinska, T.A., 2019. New design concepts for strengthening of continuous reinforced-concrete beams. IOP Conference Series: Materials Science and Engineering, 708(1) DOI: 10.1088/1757-899X/708/1/012040.
  • 2. Blikharskyy, Y., Kopiika, N., Selejdak, J., 2020. Non-uniform corrosion of steel rebar and its influence on reinforced concrete elements` reliability. Production Engineering Archives, 26(2), 67-72 DOI: 10.30657/pea.2020.26.14.
  • 3. Blikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., Blikharskyy, Z., 2021. Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. IOP Conference Series: Materials Science and Engineering, 1021(1).
  • 4. Bobalo, T., Blikharskyy, Y., Kopiika, N., Volynets, M., 2021. Influence of the Percentage of Reinforcement on the Compressive Forces Loss in Pre-stressed RC Beams Strengthened with a Package of Steel Bars. Lecture notes in civil engineering, 100, 182-191.
  • 5. DBN V.2.6-98. 2011. Konstruktsiyi budynkiv i sporud. Betonni ta zalizobetonni konstruktsiyi. Osnovni polozhennia. Kyiv: Minrehionbud Ukrainy, 72. [In Ukranian].
  • 6. Dziuba, S.T., Ingaldi, M., Kadlubek, M. 2018. Quality analysis of the steel bars in chosen metallurgical enterprise. Metal 2018 - 27th International Conference on Metallurgy and Materials, Conference Proceedings, 1893–1898.
  • 7. Karpiuk, V., Somina, Y., Maistrenko O., 2019. Engineering Method of Calculation of Beam Structures Inclined Sections Based on the Fatigue Fracture Model. Lecture Notes in Civil Engineering, 47, 135-144, DOI: 10.1007/978-3-030-27011-7_17.
  • 8. Khmil, R.Y., Tytarenko, R.Y., Blikharskyy, Y.Z., Vegera P.I., 2021a. Improvement of the method of probability evaluation of the failure-free operation of reinforced concrete beams strengthened under load. IOP Conference Series: Materials Science and Engineering, 1021(1).
  • 9. Khmil, R., Tytarenko, R., Blikharskyy, Y., Vegera, P., 2021b. The Probabilistic Calculation Model of RC Beams, Strengthened by RC Jacket. Lecture notes in civil engineering, 100, 182-191
  • 10. Kos, Ž., Klimenko, Y., 2019. The Development of Prediction Model for Failure Force of Damaged Reinforced-Concrete Slender Columns. Tehnički vjesnik, 26(6), 1635-1641, DOI: 10.17559/TV-20181219093612.
  • 11. Kotes, P., Strieska, M., Brodnan, M., 2018. Sensitive analysis of calculation of corrosion rate according to standard approach. IOP Conference Series: Materials Science and Engineering, 385(1), 012031. DOI: 10.1088/1757-899X/385/1/012031.
  • 12. Koteš, P., Vavruš, M., Jošt, J., Prokop, J., 2020. Strengthening of concrete column by using the wrapper layer of fibre reinforced concrete. Materials, 12(23), 1-21. DOI: 10.3390/ma13235432.
  • 13. Kovalchuk, B., Blikharskyy, Y., Selejdak, J.. Blikharskyy, Z., 2021. Strength of Reinforced Concrete Beams Strengthened Under Loading with Additional Reinforcement with Differe
  • 14. Kramarchuk, A., Ilnytskyy, B., Lytvyniak, O., Grabowski, A., 2019. The increase of seismic stability for existing industrial buildings. AIP Conference Proceedings, 2077. DOI: 10.1063/1.5091890.
  • 15. Lipiński T. 2017. Roughness of 1.0721 steel after corrosion tests in 20% NaCl. Production Engineering Archives, 15(15), 27-30 DOI: 10.30657/pea.2017.15.07
  • 16. Lipiński, T., Ulewicz, R., 2021. The effect of the impurities spaces on the quality of structural steel working at variable loads. Open Engineering, 11(1), 233–238. DOI: 10.1515/eng-2021-0024.
  • 17. Nikolić, R.R., Djoković, J.M., Hadzima, B., Ulewicz, R., 2020. Spot-weld service life estimate based on application of the interfacial crack concept y. Materials, 13(13), 1-11, DOI: 10.3390/ma13132976.
  • 18. Pavlikov, A., Kochkarev, D., Harkava, O., 2019. Calculation of reinforced concrete members strength by new concept. Proceedings of the fib Symposium 2019: Concrete - Innovations in Materials, Design and Structures, 820–827.
  • 19. Turba, Y., Solodkyy, S., 2021. Crack Resistance of Concretes Reinforced with Polypropylene Fiber. Lecture Notes in Civil Engineering, 100, 474-481, DOI: 10.1007/978-3-030-57340-9_58.
  • 20. Ulewicz, R., Ulewicz, M., 2020. Problems in the Implementation of the Lean Concept in the Construction Industries. Lecture Notes in Civil Engineering, 47, 495-500, DOI: 10.1007/978-3-030-27011-7_63.
  • 21. Vatulia, G., Lobiak, A., Chernogil, V., Novikova, M., 2019. Simulation of Performance of CFST Elements Containing Differentiated Profile Tubes Filled with Reinforced Concrete. In Materials Science Forum Trans Tech Publications Ltd., 968, 281-287, DOI: 10.4028/www.scientific.net/MSF.968.281.
  • 22. Vatulia, G., Rezunenko, M., Petrenko, D., Rezunenko, S., 2018. Evaluation of the carrying capacity of rectangular steel-concrete columns. Civil and Environmental Engineering, 14(1), 76–83. DOI: 10.2478/cee-2018-0010.
  • 23. Vavruš, M., Koteš, P., 2019. Numerical comparison of concrete columns strengthened with layer of fiber concrete and reinforced concrete. Transportation Research Procedia, 40, 920-926.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66f963ab-5120-4095-97be-dc8f6b704220
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.