PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of filler metal composition on microstructural and mechanical characterization of dissimilar welded joint of nitronic steel and super duplex stainless steel

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper experimentally investigates the effect of filler metal on the mechanical behavior, solidification, and microstructure of the super duplex stainless steel (sDSS2507) and nitronic steel (N50) dissimilar welded joint. This dissimilar joint is primarily applicable in the subsea control unit for high-pressure tubing and coupler assembly. For this investigation, the gas tungsten arc welding process (GTAW) employed the super duplex filler ER2594 and carbon steel grade ER70S-2 filler. The weld's structural integrity has been assessed to compare both the fillers through multiple investigations on the joint. The microstructure characterization of the base metal and as-welded specimen was carried out using an optical microscope (OM) and scanning electron microscope (SEM). Super duplex filler ER2594 weld solidified in primary ferritic mode with precipitation of several reformed austenite in the ferrite matrix, whereas ER70S-2 filler weld had long marten site laths embedded in ferrite matrix. The microstructural study reported the presence of microsegregation and Type II boundary formation. The type-II boundary is detected close to the fusion boundary at the N50 and the sDSS 2507 side of the ER70S-2 weldment. The Vickers microhardness test, Charpy impact test, and the tensile test were performed to obtain the mechanical properties of this joint. The microhardness investigation of the weld zone of ER2594 and ER70S-2 shows the average hardness of 287.34±10 Hv0.5 and 372.36±10 Hv0.5, respectively. The peak hardness of 410 Hv0.5 was observed in the weld zone of ER70S-2. The formation of large marten site laths in the ferrite matrix in the weld zone leads to higher hardness in ER70S-2 filler compared to the precipitation of softer reformed austenite in the ER2594 fller. The average impact toughness result of ER2594 and ER70S-2 is 165±5 J and 110±8 J, respectively. The Charpy impact trials showed the ductile fracture mode by employing ER2594 filler, while ER70S-2 showed the mixed fracture mode (ductile-brittle). The weldment tensile strength of filler ER2594 and ER70S-2 is 897 MPa and 873 MPa, respectively. The tensile test results indicate the ductile fracture mode for both fillers, and the failures were detected in sDSS2507.
Rocznik
Strony
art. no. e90, 1--28
Opis fizyczny
Bibliogr. 33 poz., il., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, IIT Jodhpur, Karwar, Jodhpur, India
  • Department of Mechanical Engineering, IIT Jodhpur, Karwar, Jodhpur, India
  • Department of Mechanical Engineering, IIT Jodhpur, Karwar, Jodhpur, India
Bibliografia
  • 1. Rahmani M, Eghlimi A, Shamanian M. Evaluation of micro structure and mechanical properties in dissimilar austenitic/super duplex stainless steel joint. J Mater Eng Perform. 2014;23:3745-53. https://doi.org/10.1007/s11665-014-1136-z.
  • 2. Nissley N, Anderson TD, Noecker FF, Roepke C, Gallagher M, Hukle M. Dissimilar metal welding of nitronic 50 HS® and 25% Cr super duplex stainless steel. In: Proceedings of the international conference on of shore mechanics and arctic engineering- OMAE, American Society of Mechanical Engineers (ASME), 2014. https://doi.org/10.1115/OMAE2014-24706.
  • 3. Chhibber R, Arora N, Gupta SR, Dutta BK. Use of bimetallic welds in nuclear reactors: associated problems and structural integrity assessment issues. Proc Inst Mech Eng C J Mech Eng Sci. 2006;220:1121-1133. https://doi.org/10.1243/09544062JM ES135.
  • 4. Srinivasan PB, Muthupandi V, Dietzel W, Sivan V. An assessment of impact strength and corrosion behaviour of shielded metal arc welded dissimilar weldments between UNS 31803 and IS 2062 steels. Mater Des. 2006;27:182-191. https://doi.org/10.1016/J. MATDES.2004.10.019.
  • 5. Lippold JC. Welding metallurgy and weldability. Hoboken: Wiley; 2014. https://doi.org/10.1002/9781118960332.
  • 6. Maurya AK, Pandey C, Chhibber R. Dissimilar welding of duplex stainless steel with Ni alloys: a review. Int J Press Vess Pip. 2021. https://doi.org/10.1016/j.ijpvp.2021.104439.
  • 7. Zhou Z, Löthman J. Dissimilar welding of super-duplex and super-austenitic stainless steels. Weld World. 2017;61:21-33. https:// doi.org/10.1007/s40194-016-0408-7.
  • 8. Eghlimi A, Shamanian M, Eskandarian M, Zabolian A, Szpunar JA. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal. Mater Charact. 2015;106:27. https://doi.org/ 10.1016/j.matchar.2015.05.017.
  • 9. Eghlimi A, Shamanian M, Eskandarian M, Zabolian A, Szpunar JA. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal. Amsterdam: Elsevier B.V.; 2015. https:// doi.org/10.1016/j.matchar.2015.05.036.
  • 10. Valiente Bermejo MA, Karlsson L, Svensson LE, Hurtig K, Rasmuson H, Frodigh M, Bengtsson P. Effect of shielding gas on welding performance and properties of duplex and super-duplex stainless steel welds. Weld World. 2015;59:239-249. https://doi. org/10.1007/s40194-014-0199-7.
  • 11. Khan WN, Chhibber R. Effect of filler metal on solidification, microstructure and mechanical properties of dissimilar super duplex/pipeline steel GTA weld. Mater Sci Eng A. 2021;803: 140476. https://doi.org/10.1016/j.msea.2020.140476.
  • 12. Mendoza BI, Maldonado ZC, Albiter HA, Robles PE. Dissimilar welding of super-duplex stainless steel/HSLA steel for of shore applications joined by GTAW. Engineering. 2010;02:520-8. https://doi.org/10.4236/eng.2010.27069.
  • 13. D. AWS. Structural welding code-steel. 1978. https://app.aws.org/ mwf/attachments/30/59330/Limitations.pdf. Accessed 17 Nov 2021. 14. A. International. Standard guide for preparation of metallographic specimens standard guide for preparation of metallographic specimens 1. ASTM International. 2012;03(01):1-12. https://doi.org/10.1520/E0003-11R17.1
  • 15. ASTM E8. ASTM E8/E8M standard test methods for tension testing of metallic materials 1, annual book of ASTM standards, vol. 4, pp. 1-27. 2010. https://doi.org/10.1520/E0008.
  • 16. ASTM E 23-12c. Standard test methods for notched bar impact testing of metallic materials. 2012. https://doi.org/10.1520/ E0023-18.
  • 17. Hardness K, Machines T, Hardness K, Machines S, Indenters K, Hardness K, Blocks T, Surfaces C, Uncertainty KH. Standard test methods for vickers hardness and knoop hardness of metallic materials BT-standard test methods for vickers hardness and knoop hardness of metallic materials, I (17AD), pp. 1-27. https:// doi.org/10.1520/E0092-17.2.
  • 18. Lippold JC, Kotecki DJ. Welding metallurgy and weldability of stainless steels. Wiley-VCH; 2005 19. Gunn R. Duplex stainless steels microstructure, properties and applications. Anti-Corros Methods Mater. 1998. https://doi.org/ 10.1108/acmm.1998.12845bae.001.
  • 20. Kangazian J, Shamanian M. Mechanical and microstructural evaluation of SAF 2507 and incoloy 825 dissimilar welds. J Manuf Process. 2017;26:407-418. https://doi.org/10.1016/j.jmapro.2017. 03.006.
  • 21. Sirohi S, Pandey C, Goyal A. Role of the Ni-based filler (IN625) and heat-treatment on the mechanical performance of the GTA welded dissimilar joint of P91 and SS304H steel. J Manuf Process. 2021;65:174-189. https://doi.org/10.1016/j.jmapro.2021.03.029.
  • 22. Jula M, Dehmolaei R, Alavi Zaree SR. The comparative evaluation of AISI 316/A387-Gr.91 steels dissimilar weld metal produced by CCGTAW and PCGTAW processes. J Manuf Process. 2018;36:272-280. https://doi.org/10.1016/J.JMAPRO.2018.10.032.
  • 23. Nelson T, Lippold J, MM-W Journal. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar metal welds-part 2: on-cooling transformations, Files.Aws.Org. (n.d.). 2000. http://fles.aws.org/wj/supplement/10-2000-NELSON-s.pdf. Accessed 17 Nov 2021.
  • 24. Lu Z, Shoji T, Meng F, Xue H, Qiu Y, Takeda Y, Negishi K. Characterization of microstructure and local deformation in 316NG weld heat-affected zone and stress corrosion cracking in high temperature water. Corros Sci. 2011;53:1916-32. https://doi.org/10. 1016/J.CORSCI.2011.02.009
  • 25. Saedi AH, Hajjari E, Sadrossadat SM. Microstructural characterization and mechanical properties of TIG-welded API 5L X60 HSLA steel and AISI 310S stainless steel dissimilar joints. Metall Mater Trans A Phys Metall Mater Sci. 2018;49:5497-5508. https:// doi.org/10.1007/S11661-018-4890-Y/FIGURES/13. 26. Khan WN, Chhibber R. Experimental investigation on dissimilar weld between super duplex stainless steel 2507 and API X70 pipeline steel. Proc Inst Mech Eng Part L J Mater Des Appl. 2021. https://doi.org/10.1177/14644207211013056.
  • 27. Sieurin H, Sandström R. Austenite reformation in the heat affected zone of duplex stainless steel 2205. Mater Sci Eng A. 2006;418:250-256. https://doi.org/10.1016/J.MSEA.2005.11.025.
  • 28. Guiraldenq P, Hardouin Duparc O. The genesis of the Schaeffer diagram in the history of stainless steel. Metall Res Technol. 2017;114:613. https://doi.org/10.1051/metal/2017059.
  • 29. Caplan IL. Mechanical properties and seawater behavior of nitronic 50 (22Cr-13Ni-5Mn) plate. 1976. https://apps.dtic.mil/ sti/citations/ADA020974. Accessed 12 Oct 2021.
  • 30. García-Mateo C, Caballero FG. The role of retained austenite on tensile properties of steels with bainitic microstructures. Mater Trans. 2005;46:1839-1846. https://doi.org/10.2320/matertrans.46. 1839.
  • 31. Pilhagen J, Sieurin H, Sandström R. Fracture toughness of a welded super duplex stainless steel. Mater Sci Eng A. 2014;606:40-45. https://doi.org/10.1016/j.msea.2014.03.049.
  • 32. Zhang Z, Jing H, Xu L, Han Y, Zhao L. Investigation on microstructure evolution and properties of duplex stainless steel joint multi-pass welded by using different methods. Mater Des. 2016;109:670-685. https://doi.org/10.1016/j.matdes.2016.07.110.
  • 33. Kunz J, Boontanom A, Herzog S, Suwanpinij P, Kaletsch A, Broeckmann C. Influence of hot isostatic pressing post-treatment on the microstructure and mechanical behavior of standard and super duplex stainless steel produced by laser powder bed fusion. Mater Sci Eng A. 2020;794: 139806. https://doi.org/10.1016/j.msea.2020.139806.
Uwagi
1) *Bibliografie: poz. 8=poz.9
2) Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66f75323-2738-40b9-ae22-0ccf8835446d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.