PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intelligent energy management system of a smart microgrid using multiagent systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The smart grid concept is predicated upon the pervasive use of advanced digital communication, information techniques, and artificial intelligence for the current power system, to be more characteristics of the real-time monitoring and controlling of the supply/demand. Microgrids are modern types of power systems used for distributed energy resource (DER) integration. However, the microgrid energy management, the control, and protection of microgrid components (energy sources, loads, and local storage units) is an important challenge. In this paper, the distributed energy management algorithm and control strategy of a smart microgrid is proposed using an intelligent multi-agent system (MAS) approach to achieve multiple objectives in real-time. The MAS proposed is developed with co-simulation tools, which the microgrid model, simulated using MATLAB/Simulink, and the MAS algorithm implemented in JADE through a middleware MACSimJX. The main study is to develop a new approach, able to communicate a multi-task environment such as MAS inside the S-function block of Simulink, to achieve the optimal energy management objectives.
Rocznik
Strony
23--38
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wz.
Twórcy
  • The Signals, Systems and Components Laboratory, Sidi Mohamed Ben Abdellah University FST Fez, Fez, 30060, Morocco
  • The Signals, Systems and Components Laboratory, Sidi Mohamed Ben Abdellah University FST Fez, Fez, 30060, Morocco
  • The Signals, Systems and Components Laboratory, Sidi Mohamed Ben Abdellah University FST Fez, Fez, 30060, Morocco
  • The Signals, Systems and Components Laboratory, Sidi Mohamed Ben Abdellah University FST Fez, Fez, 30060, Morocco
Bibliografia
  • [1] Abolhosseini S., Heshmati A., Altmann J., A review of renewable energy supply and energy efficiency technologies (2014).
  • [2] Gungor V.C., Sahin Dilan, Kocak Taskin, Ergut S., Cecati C., Buccella C., Hancke G.P., A survey on smart grid potential applications and communication requirements, IEEE Transactions on Industrial Informatics, vol. 9, no. 1, pp. 28–42 (2013).
  • [3] Tsikalakis A.G., Hatziargyriou N.D., Centralized control for optimizing microgrids operation, In 2011 IEEE power and energy society general meeting, vol. 23, iss. 1, pp. 1–8 (2011).
  • [4] Khan M.W., Wang J., The research on multi-agent system for microgrid control and optimization, Renewable and Sustainable Energy Reviews, vol. 80, pp. 1399–1411 (2017).
  • [5] Azeroual M., El Makrini A., El Moussaoui H., El Markhi H., Renewable Energy Potential and Available Capacity for Wind and Solar Power in Morocco Towards 2030, Journal of Engineering Science and Technology Review, vol. 11, no. 1, pp. 189–198 (2018).
  • [6] Kantamneni A., Brown L., Parker G., Weaver W., Survey of multi-agent systems for multogric control, XE, vol. 45, pp. 192–203 (2015).
  • [7] Kulasekera A.L., Multi agent based control and protection for an inverter based microgrid (2014).
  • [8] Davidson E.M., McArthur S.D.J., Tom Cumming T., Watt I., Applying multi-agent system technology in practice: Automated management and analysis of SCADA and digital fault recorder data, IEEE Transactions on Power Systems, vol. 21, iss. 2, pp. 559–567 (2006)
  • [9] Bellifemine F.L., Caire G., Greenwood D., Developing multi-agent systems with JADE, John Wiley and Sons (2007).
  • [10] Rahman M., Pota H., Mahmud M., A decentralized multi-agent approach to enhance the stability of smart microgrids with renewable energy, International Journal of Sustainable Energy, vol. 35, no. 5, pp. 429–442 (2016).
  • [11] Azeroual M., Lamhamdi T., El Moussaoui H., El Markhi H., Simulation tools for a smart grid and energy management for microgrid with wind power using multi-agent system, Wind Engineering, 0309524X19862755 (2019).
  • [12] Khamphanchai Warodom, Pisanupoj Songkran, Ongsakul Weerakorn, A multi-agent-based power system restoration approach in distributed smart grid, In 2011 International Conference and Utility Exhibition on Power and Energy Systems: Issues and Prospects for Asia (ICUE), IEEE, pp. 1–7 (2011).
  • [13] Tarhunia N.G., Elkalashyb N.I., Kawadyb T.A., Lehtonenc M., Autonomous control strategy for fault management in distribution networks, Electric Power Systems Research, vol. 121, pp. 252–259 (2015).
  • [14] Raju L., Miltron R.S., Mahadevan Senthilkumaran, Application of Multi Agent Systems in Automation of Distributed Energy Management in Micro-grid using MACSimJX, Intelligent Automation and Soft Computing, vol. 24, no. 3, pp. 1–9 (2017).
  • [15] Boudoudouh S., Maâroufi M., Real Time Distributed Systems Modeling and Control: Application to Photovoltaic Fuel Cell Electrolyser System, Journal of Engineering Science and Technology Review, vol. 10, no. 1 (2017).
  • [16] Logenthiran Thillainathan, Srinivasan Dipti, Khambadkone Ashwin M., Htay Nwe Aung, Multiagent system for real-time operation of a microgrid in real-time digital simulator, IEEE Transactions on Smart Grid, vol. 3, no. 2, pp. 925–933 (2012).
  • [17] Oh Sang-Jin, Cheol-Hee Yoo, Il-Yop Chung, Dong-Jun Wonet, Hardware-in-the-loop simulation of distributed intelligent energy management system for microgrids, Energies, vol. 6, no. 7, pp. 3263–3283 (2013).
  • [18] Wooldridge M., Weiss G., Multi-Agent Systems, The MIT Press (1999).
  • [19] El Iysaouy Lahcen, Mhammed Lahbabi, Abdelmajid Oumnad, A Novel Magic Square View Topology of a PV System under Partial Shading Condition, Energy Procedia, vol. 157, pp. 1182–1190 (2019).
  • [20] Boujenane Samira, Lamhamdi T., El Markhi H., Modeling Technique and Control Strategie for GridConnected Inverter with LCL filter, 2019 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), IEEE (2019).
  • [21] Boujoudar Y., Hemi H., El Moussaoui H., El Markhi H., Lamhamdi T., Li-ion battery parameters estimation using neural networks, International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), IEEE (2017).
  • [22] Tian H., Mancilla-David F., Ellis K., Muljadi E., Jenkins P., A cell-to-module-toarray detailed model for photovoltaic panels, Sol Energy, vol. 86, pp. 2695–2706 (2012).
  • [23] Robinson C., Mendham P., Clarke T., MACSimJX: A tool for enabling agent modelling with Simulink using JADE (2010).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66f308b8-d514-475c-aafc-3ddacccbc0f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.