PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling the power draw of tumbling mills : a comprehensive review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Optimizing power consumption in grinding, the most consumed stage in the mining industry, plays an influential role in reducing operating costs. Obtaining an efficient model to predict tumbling mills' power consumption accurately took the attention of researchers, mineral processing engineers, and tumbling mill manufacturers. This article comprehensively reviews the published mill power models and the most critical studies on this topic since 1919. Furthermore, the employed approaches for modelling the tumbling mills' power draw, the incorporated parameters into the developed models, the models' performances in predicting the industrial mills' power draw, and the potential gaps in the available literature are discussed. Moreover, based on the shortages identified in this review, some recommendations have been made to enhance the modelling mill power draw.
Słowa kluczowe
Rocznik
Strony
art. no. 151600
Opis fizyczny
Bibliogr. 109 poz.
Twórcy
  • Mining engineering faculty, Amirkabir University of Technology, Tehran, Iran
autor
  • Mining engineering faculty, Amirkabir University of Technology, Tehran, Iran
Bibliografia
  • AMANNEJAD, M., BARANI, K., 2020, Effects of ball size distribution and mill speed and their interactions on ball milling using DEM. Mineral Processing and Extractive Metallurgy Review, 1-6, doi: 10.1080/08827508.2020.1781630.
  • AUSTIN, L. G., 1990, A mill power equation for SAG mills. Mining, Metallurgy & Exploration, 7, 57–63.
  • AUSTIN, L. G., SHOJI, K., LUCKIE, P. T., 1976, The effect of ball size on mill performance. Powder Technol, 14, 71–79.
  • BASIRIFAR. F., BAHRI, Z., ABOLHASANI, M., NASERI. S., 2018, A comparison of power draw models in predicting the power of wet ball mill, a case study of Iran Alumina Co. 9th Iranian Mining Engineering Conference, Tehran, Iran, 542-546. (In Persian)
  • BIAN, X., WANG, G., WANG, H., WANG, S., LV, W., 2017, Effect of lifters and mill speed on particle behaviour, torque, power consumption of a tumbling ball mill: Experimental study and DEM simulation. Minerals Engineering, 105, 22–35.
  • BOND, F.C., 1958, Grinding ball size selection. British Chemical Engineering, 16, 378–385.
  • BOND, F.C., 1961, Crushing and grinding calculations. British Chemical Engineering, 16, 543–548.
  • BOND, F.C., 1962, Additions and revision to crushing and grinding calculations. Allis Chalmers Publication.
  • BOUCHARD, J., LEBLANC. G., LEVESQUE, M., RADZISZEWSKI, P., GEORGES-FILTEAU, D., 2019, Breaking down energy consumption in industrial grinding mills, CIM Journal, 10.
  • BUENO, M. P., KOJOVIC, T., POWELL, M.S., SHI, F, 2013, Multi-component AG/SAG mill model. Minerals Engineering, 43, 12-21.
  • CANDALL P. A. AND STRACK, O. D. L., 1979, A discrete numerical model for granular assemblies. Géotechnique, 29, 47-65.
  • CAMPBELL, J., SPENCER, S., SUTHERLAND, D., ROWLANDS, D., WELLER, K., CLEARY, P., ADRIAN HINDE, A., 2001, SAG mill monitoring using surface vibrations, SAG 2001 Third International Autogenous and Semiautogenous Grinding Technology, Vancouver, B.C., Canada,373-385.
  • CHO, H., KWON, J., KIM, K., MUN, M., 2013, Optimum choice of the make-up ball sizes for maximum throughput in tumbling ball mills. Powder Technology, 246, 625-634.
  • CHU, P., 2011, Discrete element method modeling of pulp lifter performance. Master thesis, Department of Mechanical Engineering, McGill University.
  • CLEARY, P. W., 2001, Charge behavior and power consumption in ball mills: sensitivity to mill operating conditions, liner geometry and charge composition. Int. J. Miner. Process. 63- pp. 79–114.
  • CLEARY, P., OWEN, P., 2019, effect of particle shape on structure of the charge and nature of energy utilization in a SAG mill. Mineral engineering, 132, 48-68.
  • CLEARY, P.W., SINNOTT, M., MORRISON, R., 2006, Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media, Minerals Engineering, 19, 1517–1527.
  • CMD CONSULTING, 2021, https://www.cmdconsulting.com.au/
  • DANIEL, M., LANE, G., MORRELL, S., 2010, Consolidation and validation of several tumbling mill power models. PROCEMIN 2010, Santiago, Chile, 84-92.
  • DATTA, A., MISHRA. B. K., RAJAMANI, K., 1999, Analysis of power draw in ball mills by the discrete element methosd. Canadian metallurgical quarterly, 38, 133-139.
  • DAVIS E.W., 1919, Fine crushing in ball mills. AIME Transactions, 61, 250 -296.
  • DJORDJEVIC, N., 2003, Discrete element modeling of the influence of lifters on power draw of tumbling mills. Minerals Engineering, 16, 331–336.
  • DJORDJEVIC, N., 2005, Influence of charge size distribution on net-power draw of tumbling mill based on DEM modeling. Minerals Engineering, 18, 375–378.
  • DJORDJEVIC, N., SHI, F. N., MORRISON, R., 2004, Determination of lifter design, speed and filling effects in AG mills by 3D DEM. Minerals Engineering, 17, 135–142.
  • DOLL, A. G., 2016, An updated data set for sag mill power model calibration. XXVIII International Mineral Process Congress, Quebec, Canada, 1-22.
  • ERDEM, A. S., ERGUN, S. L., BENEZER, A. H., 2004, Calculation of the power draw of dry multi-compartment ball mills. Physicochemical Problems of Mineral Processing, 38,221-230.
  • FUERSTENAU, D. W., KAPUR, P.C. AND VELAMAKANI B., 1990. A multi-torque model for the effects of dispersants and slurry viscosity on ball milling. International Journal of Mineral Processing, 28, 81 -98.
  • FLSMIDTH. Maximize Grinding Efficiency with LoadIQ. Available online: https://www.kscape.com/loadiq (accessed on 23 May 2020).
  • GOVENDER, N., RAJ K. RAJAMANI, R. K., KOK, S., WILKE, D. N., 2015, Discrete element simulation of mill charge in 3D using the BLAZE-DEM GPU framework. Minerals Engineering, 79, 152-168.
  • GOVENDER, N., RAJ RAJAMANI, R. K., DANIEL N. WILKE, D. N., CHUAN-YU WU, C., JOHANNES KHINAST, J., GLASSER, B. J., 2018, Effect of particle shape in grinding mills using a GPU based DEM code. Minerals Engineering, 129, 71-84.
  • GUTIÉRREZ, A., AHUES, D., GONZÁLEZ, F., MERINO, P., 2019, Simulation of Material Transport in a SAG Mill with Different Geometric Lifter and Pulp Lifter Attributes Using DEM. Mining, Metallurgy & Exploration 36, 431–440.
  • GÓRALCZYK. M., KROT, P., ZIMROZ, R., OGONOWSKI, S., 2020, Increasing Energy Efficiency and Productivity of the Comminution Process in Tumbling Mills by Indirect Measurements of Internal Dynamics—An Overview, energies, 13, 6735.
  • HAMZAH, M., BEAKAWI, A., OMAR, S., BAGHABRA, A.,2018, A review on the angle of repose of granular materials, Powder Technology, 330, 397-417.
  • HARRIS, C. C., SCKNOCK, E. M., ARBITER, N., 1985, Grinding mill power consumption. Mineral Processing and Technology Review, 1, 297 - 345.
  • HARVIG, J., 2017, On the Adhesive Behavior of Micron-sized Particles in Turbulent Flow. PhD thesis, Department of Energy Technology, Aalborg University.
  • HLUNGWANI, O., RIKHOTSO, J., DONG, H., MOYS, M. H., 2003, Further validation of DEM modeling of milling: effects of liner profile and mill speed. Minerals Engineering, 16, 993–998.
  • HOGG, R., FUERSTENAU, D. W., 1972. Power relationships for tumbling mills. Trans. SME/AIME, 252, 418 - 423.
  • JAHANI CHEGENI, M., 2019, Combined DEM and SPH simulation of ball milling, Journal of Mining and Environment (JME), 10, 151-161.
  • JAHANI CHEGENI, M., KOLAHI, S., NIKOUEI MAHANI, A., 2020, Investigation and comparison of grinding media energy in SAG mills with different liners by Discrete Element Method. 8th Iranian Mining Engineering Conference, 1-9. (In Persian)
  • JOHNSON, K. L., 1985, contact mechanics, Cambridge: Cambridge university press.
  • KABEZYA, K., MOTJOTJI, H., 2015, the Effect of Ball Size Diameter on Milling Performance. J. Mater. Sci. Eng. 4, 4–6.
  • KATUBILWA, F. M., MOYS, M. H., 2009, “Effect of ball size distribution on milling rate.” Miner. Eng, 22, 1283–1288.
  • KHUMALO, S., N. HLABANGANA, N., DANHA, G., MUZENDA, E., 2019, Effect of media shape on particle breakage in a batch ball mill: Lessons learnt from Population Balance Model and Attainable Region technique. SMPM 2019, Sun City, South Africa, 76-79.
  • KIANGI, K., POTAPOV, A., MOYS, M., 2013, DEM validation of media shape effects on the load behaviour and power in a dry pilot mill. Minerals Engineering, 46, 52-59.
  • KIME, M. B., 2017, using the discrete-element method to investigate ball milling power draw, load behavior, impact energy profile. CIM Journal, 8, 59-66.
  • KIMURA, M., NARUMI, M., KOBAYASHI, T., 2007, Design Method of Ball Mill by Discrete Element Method. Sumitomo Kagaku, 2, 1-9.
  • KING, R. P., 2001, Modeling and Simulation of Mineral Processing Systems, Amsterdam: Elsevier.
  • KOLAHI, S., JAHANI CHEGENI, M., 2020, Investigation of Effect of Number of Lifters on Performance of Pilot-Scale SAG Mills Using Discrete Element Method. Journal of Mining and Environment (JME), 11, 675-693.
  • KWAN, C. C., MIO, H., PAPADOPOULOS, D. G., CHEN, Y. Q., DING, Y. L., SAITO, F., A. BENTHAM, C., GHADIRI, M., 2005, Analysis of the milling rate of pharmaceutical powders using the Distinct Element Method (DEM). Chemical Engineering Science, 60, 1441 – 1448.
  • LAMECK, N. S., KIANGI, K. K., MOYS, M. H., 2006, Effects of grinding media shapes on load behavior and mill power in a dry ball mill. Minerals Engineering, 19, 1357–1361.
  • LAMECK, S. N., 2005, effects of grinding media shapes on ball mill performance. Master thesis, Faculty of Engineering and the Built Environment, University of the Witwatersrand.
  • LATCHIREDDI, S., MORRELL, S., 2003, Slurry flow in mills: grate-pulp lifter discharge systems (Part 2). Minerals Engineering, 16, 635-642.
  • LATCHIREDDI, S., MORRELL, S., 2006, Slurry flow in mills with TCPL- An efficient pulp lifter for Ag/Sag mills. Int. J. Miner. Process, 79, 174 – 187.
  • LATCHIREDDI, S.R., 2002, modeling the performance of grates and pulp lifters in autogenous and Semiautogenous mills. PhD thesis, JKMRC, University of Queensland.
  • LVOV, V., CHITALOV, L., 2021, Semi-Autogenous Wet Grinding Modeling with CFD-DEM. Minerals, 11, 1-17.
  • MAGDALINOVIC, N., TRUMIC, M., TRUMIC, M., ANDRIC, L., 2012, The optimal ball diameter in a mill. Physicochemical Problems of Mineral Processing, 48, 329–339.
  • MALEKI MOGHADDAM , M., RAHMANI DEHNAVI, S., HESAMI, R., BANISI, S., 2018, An Investigation of charge shape and mill speed on power draw in tumbling mills. Iranian Journal of Mining Engineering, 13,82-94.
  • MARINO-SALGUERO, J., JORGE, J., MENENDEZ-AGUADO, J.M., ALVAREZ-RODRIGUEZ, B., DE FELIPE, J.J., 2017, Heat generation model in the ball-milling process of a tantalum ore. Minerals & Metallurgical Processing, 34, 10-19.
  • MARYUTA, A. Frictional Oscillations in Mechanical Systems; Nedra: Moscow, Russia, 1993; p. 240.
  • MAVKO, G., MUKERJI, T., DVORKIN, J., AL IBRAHIM, M., 2018, The Influence of Convex Particles' Irregular Shape and Varying Size on Porosity, Permeability, Elastic Bulk Modulus of Granular Porous Media: Insights: From Numerical Simulations. Journal of Geophysical Research: Solid Earth, 120, 10563-10582.
  • MAYANK, K., MALAHE, M., GOVENDER, I., MANGADODDY, N., 2015, Coupled DEM-CFD Model to Predict the Tumbling Mill Dynamics, Procedia IUTAM, 15, 139-149.
  • MISHRA, B. K., RAJAMANI, R. K., 1991, the discrete element method for the simulation of ball mills. Applied mathematical modeling, 16, 598-604.
  • MISHRA, B. K., RAJAMANI, R. K., 2001, Three-Dimensional Simulation of Plant Size SAG Mills. International Conference on Autogenous and Semiautogenous Grinding Technology, SAG 2001, 48 -57.
  • MISHRA, B.K., 2003, review of computer simulation of tumbling mills by the discrete element method: Part I—contact mechanics. Int. J. Miner. Process, 71, 73 – 93.
  • MISRA, A., CHEUNG, J., 1999, Particle motion and energy distribution in tumbling ball mills. Powder Technology, 105, 222–227.
  • MOLYCOP, 2021, https://molycop.com.
  • MORRELL, S., 1993, the prediction of power draw in wet tumbling mills. PhD thesis, Department of Mining and Metallurgical Engineering, University of Queensland.
  • MORRELL, S., 2009, Predicting the overall specific energy requirement of crushing, high pressure grinding roll and tumbling mill circuits. Minerals Engineering, 22, 544-549.
  • MORRELL, S., 2016, Modeling the influence on power draw of the slurry phase in Autogenous (AG), Semi-autogenous (SAG) and ball mills. Minerals Engineering, 89, 148- 156.
  • MORRELL, S., 2019, SME Mineral Processing & Extractive Metallurgy Handbook, Englewood: Society for Mining, Metallurgy & Exploration.
  • MOYS, M. H., 1993, A model of mill power as affected by mill speed, load volume, liner design. The Southern African Institute of Mining and Metallurgy, 93,135-141.
  • NIETRO, L., AHRENS, M., 2007, Gearless Mill Drive Protection Improvements and Its Behavior at Minera Escondida Ltda. 2007 IEEE Industry Applications Annual Meeting, New Orleans, LA, USA, 23-27.
  • Outotec. Grinding Optimizer. Available online : https://www.mogroup.com/globalassets/saleshub/documents---episerver/grinding-optimizer-leaflet-web.pdf (accessed on 10 December 2020).
  • PANJIPOUR, R., BARANI, K., 2018, the effect of ball size distribution on power draw, charge motion and breakage mechanism of tumbling ball mill by discrete element method (DEM) simulation.” Physicochemical Problems of Mineral Processing, 54, 258-269.
  • PENG, Y., BAO, J., WANG, Z., 2016, A Comparison of Two-Dimensional and Three-Dimensional Micromechanical Discrete Element Modeling of the Splitting Tests for Asphalt Mixtures. ICTIM 2016, 28-37.
  • POWEL, M., VALERY, W., 2006, Slurry pooling and transport issues in SAG mills. SAG 2006, Vancouver, Canada, 133-152.
  • R. MORRISON, R., CLEARY, P. W., VALERY, W., 2001, Comparing power and performance trends from DEM and JK modelling. SAG2001, Vancouver, Canada, 284-300.
  • RAJAMANI, R. K., ALKAC, D., DELGADILLO, J. A., KUMAR, P. PAGE, D., FILLION, M., PELLETIER, S., 2011, Pulp-lifter flow modeling study in a pilot scale mill and application to plant scale mills. SAG2011.
  • RAJAMANI, R. K., KUMAR, P., GOVENDR, N., 2019, The evaluation of grinding mill power models. Mining, Metallurgy and Exploration, 36, 151-157.
  • RAZANI, M., MASOUMI, A., REZAEIZADEH, M., NOAPARAST, M., 2018, Evaluating the Effect of Feed Particles Size and Their Hardness on the Particle Size Distribution of Semi-Autogenous (SAG) Mill’s Product. Particulate Science and Technology, 36, 867-872.
  • ROSE, H. E., EVANS D. E., 1956, The dynamics of the ball mill, part I: Power requirements based on the ball and shell system. Proc. Inst. Mech. Engineers, 773 - 783.
  • ROSE, H. E., EVANS D. E., 1956, The dynamics of the ball mill, part II: the influence of the powder charge on power requirements. Proc. Inst. Mech. Engineers, 784 – 792.
  • ROYSTON, D., 2000, Curved pulp lifters for AG and SAG mills - current experience. Proceedings of the SME Annual Meeting, Salt Lake City, Utah, 1-3.
  • ROYSTON, D 2005, SAG mill pulp lifter design, discharge and backflow, Proceedings of the SME Annual Meeting, Society of Mining Engineers, Salt Lake City, Utah, 1-6.
  • SHAHBAZI, B., JAFARI, M., PARIAN, M., ROSENKRANZ, J., S. CHEHREH CHELGANI, 2020, Study on the impacts of media shapes on the performance of tumbling mills – A review. Minerals Engineering, 157, 1-10.
  • SILVA, M., CASALI, A., 2015, Modeling SAG milling power and specific energy consumption including the feed percentage of intermediate size particles. Minerals engineering, 70, 156-161.
  • SIMBA, K. P., 2010, effects of mixture of grinding media of different shapes on milling kinetics. Master thesis, Faculty of Engineering and the Built Environment, University of the Witwatersrand.
  • SINNOTT, D., CLEARY, P.W., MORRISON, R.D., 2017, Combined DEM and SPH simulation of overflow ball mill discharge and trommel flow, Minerals Engineering, 108, 93-108.
  • SOLEYMANI, M.M., FOOLADI MAHANI, M., REZAEIZADEH, 2016, Experimental observations of mill operation parameters on kinematic of the tumbling mill contents, Mechanics & Industry, 408, 1-8.
  • SOLEYMANI, M.M., FOOLADI MAHANI, M., REZAEIZADEH, M., 2015, Experimental study the impact forces of tumbling mills. Journal of process mechanical engineering, 231, 283-293.
  • SOLUTIONS, EDEM 2.6 User Guide, 2011.
  • TAVARES, L., 2017, A Review of Advanced Ball Mill Modeling. Powder and particle, 34, 106-124.
  • TAVARES, L.,RÉ, F. P., POTAPOV, A., MALISKA, C., 2020, Adapting a breakage model to discrete elements using polyhedral particles. Powder Technology, 362, 208-220.
  • TSAKALAKIS, K. G., STAMBOLTZIS, G. A., 2004, Modeling the Specific Grinding Energy and Ball-Mill Scale-up. IFAC Proceedings, 37, 53-58.
  • U.S. DOE, Mining industry energy bandwidth study, Washington, United States: U.S. Department of Energy, 2007.
  • VALERY. W., JANKOVIC, A., 2002, The future of Comminution. In: 34th IOC on mining and Metallurgy, Bor Lake, Yugoslavia, 287-298.
  • VAN NIEROP, M.A., GLOVER, G., HINDE, A.L., MOYS, M.H., 2001, A Discrete element method investigation of the charge motion and power draw of an experimental two-dimensional mill, Int. J. Miner. Process, 61, 77–92.
  • VENUGOPAL, R., RAJAMANI, R. K., 2001, 3D simulation of charge motion in tumbling mills by the discrete element method.” Powder Technology. 115, 157–166.
  • WALKER, J., HALLIDAY, D., RESNICK, R., 2011, Fundamentals of Physics, Hoboken: John Wiley & Sons.
  • WANG, M. H., YANG, R. Y., YU, A.B., 2012, DEM investigation of energy distribution and particle breakage in tumbling ball mills. Powder Technology, 223, 83–9.
  • WANG, X., YI, J., ZHOU, Z., YANG, C, 2020, Optimal Speed Control for a Semi-Autogenous Mill Based on Discrete Element Method. Processes, 8, 1-17.
  • WEERASEKARA, N. S., LIU, L.X., POWELL, M.S., 2016, Estimating energy in grinding using DEM modeling.” Minerals Engineering, 85, 23–33.
  • WEERASEKARA, N. S., POWELL, M. S., CLEARY, P.W., TAVARES, L. M., EVERTSSON, M., 2013, The contribution of DEM to the science of comminution. Powder Technology, 248, 2-24.
  • WEERASEKARA, N.S., POWELL, M.S., 2014, Performance characterisation of AG/SAG mill pulp lifters using CFD techniques. Minerals Engineering, 63, 118-124.
  • YANG, W. C., 2003, Handbook of Fluidization and Fluid−Particle System, Marcel Dekker, New York.
  • YIN, Z., LI, T., PENG, Y., WU, B., 2018, Effect of lifter shapes on the mill power in a ball mill. IMMAEE 2018.
  • YIN, Z., PENG, Y., ZHU, Z., YU, Z., LI, T., 2017, Impact load behavior between different charge and lifter in a laboratory-scale mill. Materials, 10, 1-17.
  • ZHANG, J., BAI, Y., DONG, H., WU, Q., YE. X., 2014, Influence of ball size distribution on grinding effect in horizontal planetary ball mill. Advanced Powder Technology, 25, 983–90.
  • ZHU, Z. H., YIN, J. H., OUYANG, C. J., TAN, D. Y., QIN J. Q., 2019, Modeling a Flexible Ring Net with the Discrete Element Method. Journal of Engineering Mechanics, 146,1-12.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66ecbfeb-2d2a-4493-acf9-99d82e05daac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.