Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The U.S. Department of Health and Human Services (HHS) and the Office for Civil Rights (OCR) enforce federal civil rights laws. This study analyzed the collected data on healthcare data breaches, which affected over 392 million records in the USA from 21 October 2009 until 19 April 2024, using text mining. Using Latent Dirichlet Allocation (LDA) and the Elbow methods, five major topics for text mining analysis were established. The analysis allowed to identify key breach reasons for targeting effective remedial actions and increasing data security awareness.
Wydawca
Rocznik
Tom
Strony
73--81
Opis fizyczny
Bibliogr. 50 poz., fig., tab.
Twórcy
autor
- Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON P3E 2C6, Canada
autor
- WSB Merito University in Poznań, ul. Powstańców Wielkopolskich 5, 61-895 Poznań, Poland
autor
- University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
autor
- Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
- 1. HSSOCR. 2024. https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf.
- 2. Syed, S., Spruit, M. Full-Text or Abstract? Examining Topic Coherence Scores Using Latent Dirichlet Allocation. 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 2017, 165–174. https://doi.org/10.1109/DSAA.2017.61.
- 3. Nam, J., Lee, H., Lee, S., Park, H. Literature review of complementary and alternative therapies: using text mining and analysis of trends in nursing research. BMC Nursing 2024, 23, 526. https://doi.org/10.1186/s12912-024-02172-9.
- 4. Limsomwong, P., Ingviya, T., Fumaneeshoat, O. Identifying cancer patients who received palliative care using the SPICT-LIS in medical records: a rule-based algorithm and text-mining technique. BMC Palliative Care 2024, 23, 83. https://doi.org/10.1186/s12904-024-01419-1.
- 5. Choi, S. Perceived challenges and emotional responses in the daily lives of older adults with disabilities: A Text Mining Study. Gerontology and Geriatric Medicina 2024, 10, 23337214241237097. https://doi.org/10.1177/23337214241237097.
- 6. Ji, M., Mosaffa, M., Ardestani-Jaafari, A., Li, J., Peng, C. Integration of text-mining and telemedicine appointment optimization. Annals of Operations Research 2023. https://doi.org/10.1007/s10479-023-05660-4.
- 7. Boxley, C., Fujimoto, M., Ratwani, R.M., Fong, A. A text mining approach to categorize patient safety event reports by medication error type. Scientific Reports 2023, 13, 183154. https://doi.org/10.1038/s41598-023-45152-w.
- 8. HSSOCR. 2024. https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf.
- 9. Koczkodaj, W.W., Mazurek, M., Strzalka, D., Wolny-Dominiak, A., Woodbury-Smith, M. Electronic Health Record Breaches as Social Indicators. Social Indicators Research 2019, 141(2), 861–871.
- 10. Hasan, M., Rahman, A., Karim, M.R., Khan, M.S.I., Islam, M.J. Normalized approach to find optimal number of topics in latent Dirichlet allocation (LDA). In: Kaiser, M.S., Bandyopadhyay, A., Mahmud, M., Ray, K. (Eds.) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. Advances in Intelligent Systems and Computing, 2021, 1309. Springer, Singapore. https://doi.org/10.1007/978-981-33-4673-4_27.
- 11. Chang, H.-Y., Yang, Y.-H., Lo, C.-L., Huang, Y.-Y. Factors Considered Important by Healthcare Professionals for the Management of Using Complementary Therapy in Diabetes: A Text-Mining Analysis. CIN-Computers Informatics Nursing 2023, 41, 426–433. https://doi.org/10.1097/CIN.0000000000000977.
- 12. Ahmad, P.N., Shah, A.M., Lee, K.Y. A Review on Electronic Health Record Text-Mining for Biomedical Name Entity Recognition in Healthcare Domain. Healthcare 2023, 11, 1268. https://doi.org/10.3390/healthcare11091268.
- 13. Javad, P., Saeed, A., Farhad, F., Burton-Jones, A. A systematic analysis of failures in protecting personal health data: A scoping review. International Journal of Information Management 2024, 74, 102719.
- 14. Koczkodaj, W.W., Masiak, J., Mazurek, M., Strzalka, D., Zabrodskii, P.F. Massive health record breaches evidenced by the office for civil rights data. Iranian Journal of Public Health 2019, 48(2), 278–288.
- 15. Gorgol, I. The use of complex networks tools to describe the current state of multidisciplinary research in Poland. Advances in Science and Technology-Research Journal 2020, 14, 125–138. https://doi.org/10.12913/22998624/126970.
- 16. Basil, N.N., Ambe, S., Ekhator, C., Fonkem, E. Health records database and inherent security concerns: a review of the literature. Cureus 2022, Oct 11; 14(10): e30168. https://doi.org/10.7759/cureus.30168.
- 17. Nemec Zlatolas, L., Welzer, T., Lhotska, L. Data breaches in healthcare: security mechanisms for attack mitigation. Cluster Computing 2024. https://doi.org/10.1007/s10586-024-04507-2.
- 18. Khan, S., Khan, H.U., Nazir, S. Systematic analysis of healthcare big data analytics for efficient care and disease diagnosing. Scientific Reports 2022, 12(1), 22377.
- 19. Koczkodaj, W.W., Kakiashvili, T., Szymanska, A., Montero-Marin, J., Araya, R., GarciaCampayo, J., Rutkowski, K., Strzalka, D. How to reduce the number of rating scale items without predictability loss? Scientometrics 2017, 111(2), 581–593. https://doi.org/10.1007/s11192-017-2283-4.
- 20. Kisilowski, M. Mathematical and Technical Quantitative Methods for Risk Assessment in Public Crisis Management. Advances in Science and Technology-Research Journal 2023, 17, 215–225. https://doi.org/10.12913/22998624/162188.
- 21. Khalid, H., Wade, V. Topic detection from conversational dialogue corpus with parallel Dirichlet allocation model and elbow method. In: David C. Wyld et al. (Eds.): ITCSE, NLCA, ICAIT, CAIML, ICDIPV, CRYPIS, WiMo – 2020, pp. 95-102. CS & IT – CSCP 2020. https://doi.org/10.5121/csit.2020.100508.
- 22. Awrahman, B.J., Aziz, Fatah, C., Hamaamin, M.Y. A review of the role and challenges of big data in healthcare informatics and analytics. Computational Intelligence and Neuroscience 2022, 5317760.
- 23. Koczkodaj, W.W., Szybowski, J., Wajch, E. Inconsistency indicator maps on groups for pairwise comparisons. International Journal of Approximate Reasoning 2016, 69, 81–90.
- 24. Kucharski, D., Kajor, M., Grochala, D., Iwaniec, M., Iwaniec, J. Combining Spectral Analysis with Artificial Intelligence in Heart Sound Study. Advances in Science and Technology-Research Journal 2019, 13, 112–118. https://doi.org/10.12913/22998624/108447.
- 25. Martínez, A.L., Pérez, M.G., Ruiz-Martínez, A. A Comprehensive Review of the State-of-the-Art on Security and Privacy Issues in Healthcare. ACM Computing Surveys 2023, 55, 12, Article 249 (December 2023), 38. https://doi.org/10.1145/3571156.
- 26. Trkman, M., Popovic, A., Trkman, P. The roles of privacy concerns and trust in voluntary use of governmental proximity tracing applications. Government Information Quarterly 2023, 40(1), 101787.
- 27. Almutairi, Y., Alhazmi, B., Munshi, A. Network Intrusion Detection Using Machine Learning Techniques. Advances in Science and Technology-Research Journal 2022, 16, 193–206. https://doi.org/10.12913/22998624/149934.
- 28. Al Zaabi, M., Alhashmi, S.M. Big data security and privacy in healthcare: A systematic review and future research directions. Information Development, (to be published), 2024. https://doi.org/10.1177/02666669241247781.
- 29. Breve, B., Desolda, G., Deufemia, V., & Spano, L. D. Detection and Mitigation of Cyber Attacks That Exploit Human Vulnerabilities (DAMOCLES). In Proceedings of the 2024 International Conference on Advanced Visual Interfaces (AVI '24). Association for Computing Machinery, New York, NY, USA, 2024, Article 125, 1–4. https://doi.org/10.1145/3656650.3660540.
- 30. Shojaei, P., Vlahu-Gjorgievska, E., & Chow, Y.-W. Security and Privacy of Technologies in Health Information Systems: A Systematic Literature Review. Computers, 2024, 13, 41. https://doi.org/10.3390/computers13020041.
- 31. Papanikolaou, Y., Foulds, J.R., Rubin, T.N., & Tsoumakas, G. Dense Distributions from Sparse Samples: Improved Gibbs Sampling Parameter Estimators for LDA. Journal of Machine Learning Research, 2017, 18(62), 1–58.
- 32. Latulipe, C., Mazumder, S.F., Wilson, R.K.W., et al. Security and Privacy Risks Associated with Adult Patient Portal Accounts in US Hospitals. JAMA Internal Medicine, 2020, 180(6), 845–849.
- 33. Alotaibi, Y.K., & Federico, F. The Impact of Health Information Technology on Patient Safety. Saudi Med. J., 2017, 38(12), 1173–1180. https://doi.org/10.15537/smj.2017.12.20631.
- 34. Kruse, C.S., Mileski, M., Vijaykumar, A.G., Viswanathan, S.V., Suskandla, U., Chidambaram, Y. Impact of Electronic Health Records on Long-Term Care Facilities: Systematic Review. JMIR Med Inform., 2017, 5(3), e35. Published 2017 Sep 29. https://doi.org/10.2196/medinform.7958.
- 35. Steinke, J., Bolunmez, B., Fletcher, L., Wang, V., Tomassetti, A.J., Repchick, K.M., Zaccaro, S.J., Dalal, R.S., & Tetrick, L.E. Improving Cybersecurity Incident Response Team Effectiveness Using Teams-Based Research. IEEE Security & Privacy, 2015, 13(4), 20–29.
- 36. Xu, G., Meng, Y., Chen, Z., Qiu, X., Wang, C., & Yao, H. Research on Topic Detection and Tracking for Online News Texts. IEEE Access, 2019, 7, 58407–58418.
- 37. Gostin, L.O., Hodge, J.G. Jr, & Valdiserri, R.O. Informational Privacy and the Public’s Health: The Model State Public Health Privacy Act. American Journal of Public Health, 2001, 91, 1388–1392. https://doi.org/10.2105/AJPH.91.9.1388.
- 38. O'Connor, J., & Matthews, G. Informational Privacy, Public Health, and State Laws. Am J Public Health, 2011 Oct, 101(10), 1845–50. https://doi.org/10.2105/AJPH.2011.300206.
- 39. Hodge, J.G. Jr, Piatt, J.L., White, E.N., & Gostin, L.O. Public Health Legal Protections in an Era of Artificial Intelligence. American Journal of Public Health, 2024, 114, 559–563. https://doi.org/10.2105/AJPH.2024.307619.
- 40. Wartenberg, D., & Douglas, W.T. Privacy Versus Public Health: The Impact of Current Confidentiality Rules. American Journal of Public Health, 2010, 100, 407–412. https://doi.org/10.2105/AJPH.2009.166249.
- 41. Abouelmehdi, K., Beni-Hessane, A., & Khaloufi, H. Big Healthcare Data: Preserving Security and Privacy. Journal of Big Data, 2018, 5(1), 1–18.
- 42. Senol-Durak, E., & Durak, M. The Mediator Roles of Life Satisfaction and Self-Esteem Between the Active Components of Psychological Well-Being and the Cognitive Symptoms of Problematic Internet Use. Social Indicators Research, 2011, 103(1), 23–32.
- 43. van de Burgt, B.W.M., Wasylewicz, A.T.M., Dullemond, B., Jessurun, N.T., Grouls, R.J.E., Bouwman, R.A., Korsten, E.H.M., & Egberts, T.C.G. Development of a Text Mining Algorithm for Identifying Adverse Drug Reactions in Electronic Health Records. JAMIA OPEN, 2024, 7, ooae070. https://doi.org/10.1093/jamiaopen/ooae070.
- 44. Myers, J., Frieden, T.R., Bherwani, K.M., & Henning, K.J. Ethics in Public Health Research. American Journal of Public Health, 2008, 98, 793–801. https://doi.org/10.2105/AJPH.2006.107706.
- 45. Ghafur, S., & Van Dael, J. A Retrospective Analysis of Cybersecurity Threats Impacting Patient Safety in the UK. BMJ Health & Care Informatics, 2019, 26(1), e100075.
- 46. Brennan, T.A., Leape, L.L., Laird, N.M., Hebert, L., Localio, A.R., Lawthers, A.G., Newhouse, J.P., Weiler, P.C., & Hiatt, H.H. Incidence of Adverse Events and Negligence in Hospitalized Patients: Results of the Harvard Medical Practice Study I. The New England Journal of Medicine, 1991, 324, 370–376.
- 47. Sittig, D.F., & Singh, H. A Socio-Technical Approach to Preventing Health IT-Related Patient Safety Hazards: The Need for Clinical and IT Collaboration. Journal of Biomedical Informatics, 2018, 78, 161–167.
- 48. Koczkodaj, W.W., Kowalczyk, A., Mazurek, M., Pedrycz, W., Redlarski, G., Rogalska, E., Strzalka, D., Szymanska, A., Wilinski, A., & Xue, O.S. Peer Assessment as a Method for Measuring Harmful Internet Use. MethodsX, 2023, 11, 102249. https://doi.org/10.1016/j.mex.2023.102249.
- 49. Yilmaz, F. Evaluation of Working Conditions and Professional Independence Perceptions of Occupational Health and Safety Professionals. Advances in Science and Technology-Research Journal, 2021, 15, 118–125. https://doi.org/10.12913/22998624/142215.
- 50. Koczkodaj, W.W., & Szybowski, J. The Limit of Inconsistency Reduction in Pairwise Comparisons. International Journal of Applied Mathematics and Computer Science, 2016, 26(3), 721–729. https://doi.org/10.1515/amcs-2016-0050.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66eae7f5-779f-4a56-bd3d-28cf0ca71234
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.