Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents a prototype of a cellular composite material fabricated by additive manufacturing technology and characterized by a complex internal core structure based on the Kelvin foam model. The thermal conductivity of the prototype material was experimentally determined as a function of the material used for printing, i.e. thermosetting resins with different degrees of transparency, reflectance, and emissivity, as well as variable layering of the composite. The optimal composition for the composite was determined by a multi-criteria ANOVA. The lowest possible thermal conductivity of the insulation was 0.0250 W/(m·K) and the highest possible thermal resistance was 0.7926 (m2·K)/W. The innovative cellular composite produced by 3D printing technology has good insulating performance and could therefore be used to improve the energy efficiency of buildings, appliances, or equipment.
Czasopismo
Rocznik
Tom
Strony
49--62
Opis fizyczny
Bibliogr. 36 poz., fot., rys., tab., wykr.
Twórcy
autor
- Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering
autor
- Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering
autor
- Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering, Department of Energy Conversion Engineering
Bibliografia
- [1] R. Geyer, J. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, „Science Advances” 2017, Vol. 3, No. 7.
- [2] A. Malik, M.I. Ul Haq, A. Raina, K. Gupta, 3D printing towards implementing Industry 4.0: sustainability aspects, barriers and challenges, „Industrial Robot: the International Journal of Robotics Research and Application” 2022, Vol. 49, No. 3, s. 491-511.
- [3] A. Zakari, I. Khan, D. Tan, R. Alvarado, V. Dagar, Energy efficiency and sustainable development goals (SDGs), „Energy” 2022, Vol. 239.
- [4] F. Hu, S. Wu, Y. Sun, Hollow‐structured materials for thermal insulation, „Advanced Materials” 2018, No. 38.
- [5] B. Grabowska, K. Wiśniewski, K. Bawolski, Propozycja materiału termoizolacyjnego inspirowanego naturą w technologii druku 3D, „Chłodnictwo & Klimatyzacja” 2019/2020, No. 12/01, s. 60-63.
- [6] A. Santoni, P. Bonfiglio, P. Fausti, C. Marescotti, V. Mazzanti, F. Mollica, F. Pompoli, Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres, „Applied Acoustics” 2019, Vol. 150, s. 279-289.
- [7] M. Javaid, A. Haleem, R. P. Singh, R. Suman, S. Rab, Role of additive manufacturing applications towards environmental sustainability, „Advanced Industrial and Engineering Polymer Research” 2021, No. 4, s. 312-322.
- [8] A. Kafle, E. Luis, R. Silwal, H.M. Pan, P.L. Shrestha, A.K. Bastola, 3D/4D printing of polymers: fused deposition modelling (FDM), selective laser sintering (SLS), and stereolithography (SLA), „Polymers” 2021, Vol. 13, No. 18.
- [9] H. Dodziuk, Druk 3D/AM: Zastosowania oraz skutki społeczne i gospodarcze, Wydawnictwo Naukowe PWN, Warszawa 2019.
- [10] D. Delgado Camacho, P. Clayton, W. O’Brien, R. Ferron, M. Juenger, S. Salamone, C. Seepersad, Applications of additive manufacturing in the construction industry - a forward-looking review, 34rd ISARC, Taipei 2017.
- [11] V. Shanmugam, O. Das, R.E. Neisiany, K. Babu, S. Singh, M.S. Hedenqvist, F. Berto, S. Ramakrishna, Polymer recycling in additive manufacturing: an opportunity, „Materials Circular Economy” 2020, Vol. 2, No. 11.
- [12] J.V. Carstensen, M. Ganobjak, Topology-optimized design of building component with improved thermal and stiffness properties, IASS Symposium, Boston 2018.
- [13] M. Sarakinioti, T. Konstantinou, M. Turrin, M. Tenpierik, R. Loonen, M. de Klijn-Chevalerias, U. Knaack, Development and prototyping of an integrated 3D-printed façade for thermal regulation in complex geometries, „Journal of Facade Design and Engineering” 2018, Vol. 6, No. 2, s. 29-40.
- [14] S. Islam, G. Bhat, Sikdar, Thermal and acoustic performance evaluation of 3D-printable PLA materials, „Journal of Building Engineering” 2023, Vol. 67.
- [15] T. de Rubeis, 3D-printed blocks: thermal performance analysis and opportunities for insulating materials, „Sustainability” 2022, Vol. 14, No. 3.
- [16] T. de Rubeis, A. Ciccozzi, L. Giusti, D. Ambrosini, The 3D printing potential for heat flow optimization: influence of block geometries on heat transfer processes, „Sustainability” 2022, Vol. 14, No. 23.
- [17] T. de Rubeis, A. Ciccozzi, G. Pasqualoni, D. Paoletti, D. Ambrosini, On the use of waste materials for thermal improvement of 3D-printed block - an experimental comparison, „Buildings” 2023, Vol. 13, No. 5.
- [18] B. Grabowska, J. Kasperski, The thermal conductivity of 3D printed plastic insulation materials - the effect of optimizing the regular structure of closures, „Materials” 2020, Vol. 13, No. 19.
- [19] B. Anwajler, R. Spychaj, P. Wójcik, A. Piwowar, Doświadczalne wyznaczenie właściwości cieplnych prototypowych materiałów izolacyjnych wykonanych technologią druku 3D, „Rynek Energii” 2021, No. 6, s. 44-51.
- [20] B. Anwajler, The thermal properties of a prototype insulation with a gyroid structure - optimization of the structure of a cellular composite made using SLS printing technology, „Materials”, Vol. 15, No. 4.
- [21] B. Anwajler, A. Piwowar, Bioniczny kompozyt komórkowy o właściwościach izolacyjnych wykonany w technologii addytywnej, SLS, „Izolacje” 2023, Vol. 28, No. 1, s. 116-123.
- [22] B. Anwajler, M. Szkudlarek, Właściwości cieplne materiałów o strukturze TPMS wykonanych w technologii druku addytywnego SLS, „Rynek Energii” 2023, No. 1, s. 11-20.
- [23] P. D’Aprile, H. Engel, G. van Gendt, S. Helmcke, S. Hieronimus, T. Nauclér, D. Pinner, D. Walter, M. Witteveen, Net-Zero Europe: decarbonization pathways and socioeconomic implications, New York: McKinsey and Company, 2020.
- [24] K. Kamau-Devers, V.R. Yanez, V.W. Medina Peralta, S.A. Miller, Using internal micro-scale architectures from additive manufacturing to increase material efficiency, „Journal of Cleaner Production” 2021, Vol. 291, No. 12.
- [25] D. Kumar, A. Morshed, P.X.W. Zou, J.G. Sanjayan, R.A. Memon, Comparative analysis of building insulation material properties and performance, „Renewable and Sustainable Energy Reviews” 2020, Vol. 131, No. 7.
- [26] M. Pérez, D. Carou, E.M. Rubio, R. Teti, Current advances in additive manufacturing, „Procedia CIRP”, 2020, Vol. 88, s. 439-444.
- [27] T.J. Lu, H.A. Stone, M.F. Ashby, Heat transfer in open-cell metal foams, „Acta Materialia” 1998, Vol. 46, No. 10, s. 3619-3635.
- [28] J. Górzyński, Przemysłowe izolacje cieplne, Wydawnictwo Sorus, Poznań 1996.
- [29] P. Furmański, T.S. Wiśniewski, J. Banaszek, Izolacje cieplne: mechanizmy wymiany ciepła, właściwości cieplne i ich pomiary, Politechnika Warszawska, Instytut Techniki Cieplnej, Warszawa 2006.
- [30] B. Grabowska, J. Kasperski, Modeling of thermal properties of thermal insulation layered with transparent, opaque and reflective film, „Journal of Thermal Science” 2018, No. 27, s. 463-469.
- [31] L. Aditya, T.M.I. Mahlia, B. Rismanchi, H.M. Ng, M.H. Hasan, H.S.C. Metselaar, O. Muraza, H.B. Aditiya, A review on insulation materials for energy conservation in buildings, „Renewable and Sustainable Energy Reviews” 2017, Vol. 73, s. 1352-1365.
- [32] E. Barreira, R.M.S F. Almeida, M.L. Simões, Emissivity of Building Materials for Infrared Measurements, „Sensors” 2021, Vol. 21, No. 6.
- [33] Y.A. Cengel, Heat transfer: a practical approach, 2nd ed., McGraw Hill, New York 2002.
- [34] K. Reimer, Skandal z pianą, czyli Afrodyta topologiczna, „Delta” 2015, No. 10.
- [35] J.P.J. Brennan-Craddock, G.A. Bingham, R.J.M. Hague, R.D. Wildman, Impact Absorbent Rapid Manufactured Structures (IARMS), International Solid Freeform Fabrication Symposium, 2008.
- [36] Thermal insulation - Building elements - In-situ measurement of thermal resistance and thermal transmittance. Part 1: Heat flow meter method, ISO 9869-1:2014, 2014.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66e9f8a3-e644-440e-93a4-fa7e54713e04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.