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Abstract. Depending on the mutual relation between external load, tendon’s length 

parameter resulting from the direction of loading force and the free vibration frequency 

parameter, the slope of characteristic curves of a considered column subjected to force 

directed towards the positive pole can take the negative, zero and positive value. The pur-

pose of this paper is to determine the criterion that allows for classification of an analysed 

structure to divergent or divergent pseudo-fluttering type of system. On the basis of obtained 

formulas, the ranges of parameters describing the Winkler elastic foundation for which the 

considered system may be classified as one of the abovementioned types were determined. 
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1. Introduction 

Due to the course of curves on the plane external load - free vibrations frequency, 

the slender systems can be classified into four types: divergent, fluttering, hybrid 

and divergent pseudo-fluttering (see [1-3]). In article [4], on the basis of criterion 

of loss of stability by divergence, it has been stated that the slope of characteristic 

curves of conservative columns (systems that lose stability with buckling) is always 

a negative value. In works [1, 2, 5, 6] it has been proven that structures under 

specific load (combining properties of the follower force or generalised load with 

force directed towards the pole) can be considered as a divergent pseudo-fluttering 

type. The stability and free vibrations of structure under a generalised load with 

force directed toward the pole were analysed in publications [1, 6]. Results of 

numerical calculation concerning free vibrations and stability of columns loaded 

by the follower force directed towards the pole were presented in works [2, 6]. 

In both cases the angles of the tangents to obtained characteristic curves can take 

positive, zero and negative values. It was found that the main factors determining 

the change in the type of system are parameters describing the geometry of 
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the loading head, stiffness of spring supporting structure and the stiffness of elastic 

foundation. The influence of the stiffness of elastic foundation on the local 

instability was discussed in [7, 8]. 

2. The physical model of the system 

A geometrically nonlinear column locally resting on a one-parameter Winkler 

elastic foundation is analysed. The considered system is loaded by force directed 

towards the positive pole. The following variants of the structure are examined: 

NW - geometrically nonlinear column (compare [9]), whose internal rod was sup-

ported at a certain section ld on Winkler elastic base with stiffness K (see Fig. 1). 

The location of the elastic foundation is determined by dimension lc . In order to 

model local supporting, the internal rod was divided into three parts with flexural 

stiffness (EJ)2 , (EJ)3 and (EJ)4 , compressive stiffness (EA)2 , (EA)3 and (EA)4 and 

mass per unit length (ρA)2 , (ρA)3 and (ρA)4 respectively, where: 

 ( ) ( ) ( ) ,
432

EJEJEJ ==  (1) 

 ( ) ( ) ( ) ,
432

EAEAEA ==  (2) 

 ( ) ( ) ( ) .
432

AAA ρρρ ==  (3) 

 

Fig. 1. The physical model of a geometrically nonlinear column (compare [9]) 

locally resting on Winkler foundation NW 
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Flexural stiffness of system was described by the coefficient of the flexural 

stiffness distribution µ: 

 
( )
( )

.

1

2

EJ

EJ
=µ  (4) 

It is assumed that total flexural stiffness is constant: 

 ( ) ( ) .

21
constEJEJ =+  (5) 

 
Fig. 2. The physical model of geometrically nonlinear column N 

N - geometrically nonlinear column built of three rods connected with each other 

by concentrated mass m that ensures the same deflections and angles of deflections 

at the free end of system (Fig. 2). In order to simplify the calculations, two external 

rods are considered as one rod with total flexural stiffness (EJ)1. 

3. Mechanical energy of system, equations of motion 

and boundary conditions 

Taking into consideration the physical model of a geometrically nonlinear column 

locally resting on Winkler elastic foundation NW, on the basis of the Bernoulli- 

-Euler theory the potential energy V and the kinetic energy T were determined as 

follows: 
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where: 

( )tLU ,
1

=∆ , 

U1(x1,t), U2(x2,t), U3(x3,t), U4(x4,t) - longitudinal displacements. 

The issue of free vibrations of the column was formulated on the basis of 

Hamilton’s principle [10] (Eq. (8)) using properties of variational calculus: 
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Known a priori geometrical boundary and continuity conditions can be 

written as: 
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where: 
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ll +=  (19a,b) 

The distribution of an internal load in each rod of the column was described 

as follows: 
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where S2 = S3 = S4. 

Taking into account variation of mechanical energy (6), (7) in equation (8), using 

expressions (9)-(18), the following relations were obtained: 

– differential equations of motion: 
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– natural boundary conditions: 
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– natural continuity conditions: 
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4. Results of numerical calculations 

In order to be able to compare results of numerical calculations the following 

dimensionless parameters were used: 

– dimensionless parameter of external load 
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– parameter of free vibration frequency 
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– length of tendon parameter 
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– parameters describing the Winkler elastic foundation: stiffness K
*
, length ld

*
, 

location lc
*
: 
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In Figure 3 the courses of characteristic curves (curves on the plane parameter 

of free vibration frequency - parameter of external load) were presented for N 

and NW columns, respectively. The slope of curves corresponding to the first 

natural frequency may be only negative (a divergent type of system) or negative, 

zero and positive (a divergent pseudo-fluttering type of system). 

In the case of an analysed column loaded by force directed towards the positive 

pole, belonging to particular type of system, is heavily determined by length 

of the tendon parameter. Courses of curves on the plane free vibration frequency - 

external load are additionally influenced by taking into consideration an elastic 

foundation. 
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a) b) 

  

Fig. 3. The first two free vibration frequencies curves for different values 

of tendon’s length parameter lb
*: a) column N, b) column NW. 

The dimensionless coefficient of the flexural stiffness 

distribution µ = 0.3, parameters describing elastic foundation: 

K* = 10, lc
* = 0.5, ld

* = 0.8 

5. The criterion for determining a type of system 

Analogously to articles [4, 10], differential equations of motion (21)-(22) were 

formulated in the following form: 
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The following integral - differential formula is analysed: 
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Integral (43) is a function of the variables λI and ΩI . It is assumed that the stiffness 

of elastic foundation K1 is constant and does not depend on load parameter λI . By 

differentiating both sides of equation (43) with respect to λI, grouping expressions 

and multiplying both sides by dλI it was obtained: 
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It should be noted that underlined integrals in formula (44) are equal to zero 

(compare equation of motion (35)-(38)). From the natural boundary and continuity 

conditions (see Eqs. (23)-(28)) it follows that: 
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Using formulas (45)-(49) after prior integrating by parts of terms with second and 

fourth derivatives, relation (44) takes the form: 
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The first four integrals in formula (50) are equal to zero (see Eqs. (35)-(38)). After 

transformation of equation (50) the formula describing the slope of an eigenvalue 

curve of a geometrically nonlinear column loaded by force directed towards 

the positive pole locally resting on the Winkler elastic foundation was obtained: 
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  (51) 

The denominator in the formula (51) is always positive, so the sign of the equation 

depends only on the sign of the numerator. The result of the equation may be 

positive, negative or equal to zero depending on the values of elastic foundation 

parameters, external load and first natural frequency. In the case where 

0
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  system is classified as a divergent type system and when 
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 system is among the divergent pseudo-fluttering systems (see 

Fig. 4). Ranges of values of a tendon’s length parameter, for which the analysed 

system may be classified as one of two types mentioned above, were shown 

in Figure 5. The figure also illustrates the influence of stiffness of the Winkler 

elastic foundation on the type of the system. The presented results of numerical 

calculations refer to the selected values of coefficient of flexural stiffness 

distribution µ, length and location of elastic base parameters. 
 

 
Fig. 4. Curves on the plane: external load parameter λI - first natural frequency parameter 

ΩI  for: a), b) divergent, c) divergent pseudo-fluttering types of system 

 
Fig. 5. The influence of stiffness of Winkler elastic foundation K* and tendon’s length 

parameter lb
* on the type of the system (lc

* = 0.5, ld
* = 0.8, µ = 0.1) 
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Fig. 6. Influence of parameters of length ld
* and location lc

* of the Winkler foundation 

on type of system (lb
* = 0.85, µ = 0.1) 

The influence of parameters describing length and location of the Winkler elastic 

foundation on the type of the system was presented in Figure 6. When stiffness K
*
 

equals zero, the considered system is classified as the divergent pseudo-fluttering 

structure. Scopes of ld
*
 and lc

* 
parameters, for which the type of the system changes 

into divergent were marked using brighter shades, for elastic foundation stiffness 

equals K
* 
= 10 and K

* 
= 20, respectively. 

6. Conclusions 

The objective of the work was to obtain the criterion describing the influence of 

the stiffness of the Winkler elastic foundation parameter and the tendon’s length 

parameter on the type of geometrically nonlinear column (divergent, divergent 

pseudo-fluttering) under a considered load directed towards the positive pole. 

On the basis of the presented results of numerical calculations, the following 

conclusions may be formulated: 

– the system loaded by force directed towards the positive pole may be classified 

as one of two types: divergent or divergent pseudo-fluttering. The slope of 

the characteristic curves (curves on the plane free vibration frequency parameter 

- external load parameter) can take a negative, zero and positive value, 

– taking into consideration a one-parameter Winkler elastic foundation in the 

physical model causes an increase of the value of free vibration frequency and 

critical load (the first natural frequency corresponding to the critical load), 

– tendon’s length parameter defining the direction of external load and the stiff-

ness of the Winkler elastic foundation with a given parameters of length and 

location define belonging to one of two types of system. 
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