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Q-functional applications

Abstract The Q-measure indicate a weak∗ limit of the barycenter of a sequence

of Borel measurable functions. In this paper, we will look only at Q-functional. Q-

functional is de�ned by Q- measure, it is useful in the �eld of optimization. Compu-

tational results for Q-functional are presented and compared with Young functional.

The obtained analytical results demonstrate relative error in Q-functional is lesser

compared to Young functional.
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1. Introduction Sequences of bounded functions that are oscillatory
and concentrated in nature often arise in many practical problems. For ex-
ample, in the non-convex optimization problem when the integrand is the
above-described sequence, the classical minimizer does not exist(cf.[2]). In this
case, the minimizing sequence, which minimizes the integral, oscillates rapidly.
In addition, it strongly diverges but remains uniformly bounded. Moreover,
even the weak* convergent sub-sequences of such bounded sequence oscillate
rapidly around the weak* limit.

To overcome this problem (cf.[12]), the generalized limits of such sequences
are conceptualized by enlarging the space of functions to the measure spaces.
The idea is to assign the limit, not as a usual function but as a probability
measure-valued function, referred as Young measure . It is successfully used
to capture oscillatory behavior of sequences of function; however, it fails to
represent some case of concentration property of the sequence (cf.[12]). Some
oscillatory sequences with concentration property in a bounded domain are
constructed in [13]. Geometrical interpretation of Young measure is intro-
duced in [11].

The major motivation of this work is to �nd a functional value using Q-
measure. The Q- measure is weakly stable family of probability measure that
can capture oscillatory and concentrating behavior of sequence of functions.
It is �rst introduced by Jisha in[8]. This innovative concept of a new measure
of a function is given by generating a sequence of functions through singular
or regular perturbation. Q- measure application in PDE is discussed in this
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article. The application of Q- measure in PDE is discussed in [8]. In this
manuscript discussed about Q-functional (QF), when Q-measure acts on a
Caratheodory function and a numerical algorithm is given to compute it. It
can be noticed that by increasing the sample size on uniform mesh, the QF
value converges to an exact Q- functional value. In the calculus of variations
or in the static problems in mechanics, the integral functionals of the form
equation (8) acting on an appropriate function space play the fundamental
role.

In section 2, we discuss the construction of the barycenter of a sequence of
function is discussed. In section 3, the Q-functional for singular and regular
perturb function and the relative error have been discussed. Detailed study
of Q- functional values with respect to regular and singular perturb function
with di�erent types of mesh is provided in section 4.

2. Barycenter of sequence of functions Let Ai be a disjoint partition

of R =

n∏
i=1

[ai, bi] (see [1, 8]), and vi is a given sequence of Borel measurable

function in R and ui ∈ L1(Ai), for all Ai. Then we can de�ne Barycenter of
the sequence of nth term of functions as equation (1)

un(x) = lim
k→∞

n∑
i=1

k∑
j=1

uiχAj (x)

n
. (1)

where

ui =

{
vi if x ∈ Aj

0 if x /∈ Aj
. (2)

Barycenter of sequence of functions is

u(x) = lim
n→∞

un(x), (3a)

= lim
n→∞

lim
k→∞

n∑
i=1

k∑
j=1

uiχAj (x)

n
, (3b)

The existence of Q- measure is discussed in [8].

Definition 2.1 Let un ∈ L2(K),K ⊂ R. The function u(x) is said to be
regularly perturbed with respect to L2(K) norm if it satis�ed for all positive
ϵn, n = 1, 2....

||u(x− ϵn)− u(x)|| → 0 as ϵn → 0 .

Otherwise it is said to be singularly perturbed.
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2.1.1. Construction of sequence un(x) from singularly perturbed
function u(x)[8]

To construct a sequence of the function un(x), we choose a sequence

ϵn > 0, n = 1, 2, ... with
∞∑
i=1

ϵi < ∞ such that for x ∈ K, c > 0,

x± ϵn + c ∈ K ⊂ R and u(x± ϵn + c) ↛ u(x)
as ϵn tends to 0.

u2m+1(x) =

{
u(x− ϵn + c) if x− ϵn + c ∈ K
u(x) if x− ϵn + c /∈ K,

(4)

u2m(x) =

{
u(x+ ϵn + c) if x+ ϵn + c ∈ K
u(x) if x+ ϵn + c /∈ K,

(5)

where m = 1, 2, 3, ..., n.

2.1.2. Construction of the sequence un(x) from regularly perturbed
function u(x)

In this case, we choose a sequence ϵn > 0 with
∞∑
i=1

ϵi < ∞ such that for

x ∈ K, x± ϵn ∈ K, de�ne the sequences un(x).

u2m+1(x) =

{
u(x− ϵn) if x− ϵn ∈ K
u(x) if x− ϵn /∈ K,

(6)

u2m(x) =

{
u(x+ ϵn) if x+ ϵn ∈ K
u(x) if x+ ϵn /∈ K.

(7)

Where m = 1, 2, 3...n.

We applied average concept un(x) of un(x) in Young measure concept.
We remarks that if u(x) = u(x) in a bounded domain, Q-measure is equal to
Young measure almost everywhere. One of the main advantage of Q-measure
is that it's possible to �nd the Q- measure in the unbounded domain provided
Borel measurable function lies in L2(K),K ⊆ R.

To construct the sequences of function in equation (6) and (7) is useful
for various �elds especially calculus of variation[9], signals analysis problems
and atmospheric sciences.

Remark 2.2

� Assume u(x) be a function, which is not in the form of un(x). While
constructing un(x) in (6) and (7), infer that Q measure is the weak*
measurable map of the average of symmetric perturbation(or symmetric
disturbance) of the function u(x).
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� We also remarks that Q-measure corresponding to a regularly perturbed
piece-wise continuously di�erentiable function is equal to Young mea-
sure. In that case, both Young functional (YF) and Q-functional values
are equal.

3. Q- functional related to certain class of sequence of function

Table 1: Young functional values with uniform mesh size at N = 10000, a =
0, b = 2, c = 1, d = 4. and H(x, y) is the Caratheodory function.
Sl.No. u(x) H(x, y) Sample size YF Relative E=exact

error = E−Y F
E

solution

100 1.0664 0.27983

1 (x− 1)2 xy4 1000 0.9286 0.1143245 0.83333

10000 0.8316 0.0020760

100 8.3534 0.0172470

2 (x− 1)2 x+ y 1000 8.5102 0.0012000 8.5

10000 8.5141 0.0016588

100 1436.8 0.0161051

3 x+ 1 x+ y7 1000 1334.1 0.0780600 1237.5

10000 1234.5 0.0024242

100 18930 0.2163520

4 x+ 1 y10 1000 23585 0.0236491 24156.27273

10000 24465 0.0127804

100 0.1049 0.2656999

5 (x− 1)2 y10 1000 0.1318 0.0773999 0.142857142

10000 0.1472 0.0346000

100 185.1772 0.017460

6 x+ 1 y5 1000 186.6034 0.025293 182

10000 183.2184 0.006695

100 0.1589 0.417366

7 (x− 1)2 y5 1000 0.2511 0.0792991 0.272727

10000 0.2629 0.036032

In the elasticity theory, we need to �nd the minimum of the energy func-
tional of the considered body. Generally, the functional is of the form

J(u) =

∫
Ω
H(x, u(x),▽u(x))dx (8)

where Ω is an elastic body under consideration, u denotes the displacement
and H represents the density of the internal energy of Ω. The crucial point in
this problem is the energy functionals are not often quasiconvex with respect
to the third variable. This is the reason, the functional J is bounded from
below does not attain its in�mum. Moreover, elements of any minimizing se-
quence of J are the functions that rapidly oscillate. This oscillating nature
of the minimizing sequences shows itself as micro structure that can be ob-
served in nature. It turns out that in the case of non(quasi)convex variational
problems, the Q-functional concept is more useful.
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In this section, Q functional is introduced and compared with the Young
functional in the case of continuously di�erentiable function with non-zero
derivative in a given domain. The Q-functional is computed by extending the
algorithm given by [5, 6, 7, 10] for computing Young's functional using the
Monte-Carlo method.

In the table 1, the Young functional values are obtained by using sim-
ulation algorithm 1, the Young functional values using simple Mont Carlo
simulation. The corresponding algorithm and required details are given in
the appendix. From the table 1, it can be observed that error increases with
the increase in the power of y. However, with the increase in sample size of the
numerical value in Young functional converge to the exact Young functional
value.

Example 3.1 (Convergence of error for YF with u(x) = (x− 1)2 )
In the following �gure 1 the young functional values of the function u(x) =
(x− 1)2, x ∈ [0, 2] and H(x, y) = xy4, y ∈ [0, 4] are plotted for di�erent sam-
ple size. These values show that error tends to zero with the increase in the
sample size, however, compared to Q functional it exhibits more �uctuation.

Figure 1: Representation of the relative error convergence of YF

3.1. Computation of Q functional

Definition 3.2 (Generalized Q- measure generated by the sequence)

Let uk be the sequence of continuously di�erentiable Borel measurable func-
tions with non zero derivatives in a given domain and uk(x) takes from the
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equation(1). We says, that a family ν = (νx)x∈Ω of probability measures is a
Generalized Q- measure generated by the sequence uk if for any Caratheodory
function H : Ω× R3 → R ∪ {∞},∫

Ω
H(x, uk(x))dx →

∫
Ω

∫
K
H(x, y)dνx(y)dx, as k → ∞ (9)

The procedure to compute the Q functional using Monte-Carlo method is
given in following Algorithm 1 (compute QF value). This algorithm can be
viewed as an extension of the procedure [6] for computing Young functional.

Algorithm 1 Compute QF value

1: procedure QF value(u)
2: Set k = 1
3: input u(x), H(x, y), a, b, c, d
4: Choose sample size N
5: Divide the interval in to n equal disjoint interval [ai, bi], i = 1, 2, ..., n+1
6: y = uk(t)
7: for each integer t do
8: t = Random((ai, bi))
9: y = f(t)

10: z[k] = INT (H(x, y), x, c, d)
11: end for
12: z = (z[1], z[2], ..., z[n])
13: QF=mean(sample)
14: Return QF
15: end procedure

1

From the comparison of Q functional and Young functional values indeed the
following result. In Table 2, the computed Q-functional values (MQF) using
Monte Carlo based Algorithm 1 is given. It can be seen from the given results
that the computed values of Q-functional converge the analytical values with
the increase of sample size. It is also evident from Table 1 and Table 2 that
the relative error in the computation of Q functional is less compared to the
relative error in computing the Young functional. We notice that in all test
problems the endpoints of the intervals are included in the computation of
Q-functional.

4. Detailed study of Q- functional values with respect to regular
and singular perturb function with di�erent types of mesh
In this section discussing the Q-functional values with respect to regular
and singular perturb function with uniform, monotone and unequal mesh
are given.
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Sl.No. u(x) H(x, y) Sample size MQF Relative error Exact value of QF

100 0.8861 0.06332

1 (x− 1)2 xy4 1000 0.8372 0.00464 0.833

10000 0.8313 0.00244

100 8.5201 0.002365

2 (x− 1)2 x+ y 1000 8.5020 0.000235 8.5

10000 8.5020 0.000235

100 1287.5 0.0404

3 x+ 1 x+ y7 1000 1241.1 0.00291 1237.5

10000 1236.3 0.00097

100 25685 0.066328

4 x+ 1 y10 1000 24256 0.00413 24156.27

10000 24120 0.001502

100 0.1663 0.1641

5 (x− 1)2 y10 1000 0.1445 0.0115 0.1428

10000 0.1418 0.0074

100 187.1504 0.0283

6 x+ 1 y5 1000 182.3978 0.002 182

10000 181.8982 0.000559

100 0.2979 0.0923

7 (x− 1)2 y5 1000 0.2743 0.00577 0.2727

10000 0.2718 0.003399

Table 2: Q functional values for regular perturb functions with uniform mesh
at N = 10000, a = 0, b = 2, c = 1, and d = 4.

4.1. Comparison of the Q-functional values by regular perturb
function with di�erent types of mesh
Let us consider the function u(x) = (x − 1)2 & H(x, y) = xy4 and exact
solution of QF is 0.83333 from equation (13). Using the above algorithm, the
sample size and di�erent mesh on the MQF values.

Figure 2: Black star graph is the av-
erage of function using Data 1.

Figure 3: Total area represent the Q-
functional value of the data 1

1. Q-functional value of Regular perturbation function with uni-
form mesh:
From the �gure 4, it is evident that mesh with equal size compared to
mesh with the unequal size has a less relative error even though the
sample size is increased. As we increase, the sample size, the relative
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error converges fastly to zero and has less �uctuation. In compared to
Young functional error analysis, Q- functional fastly converges to zero.
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Figure 4: Representation of the relative error in di�erent sample size

2. Regular perturb function with Unequal mesh size
The nonuniform mesh has also less error as compared to monotonic
mesh. An increasing sample size, error converges to zero as depicted in
�gure 5. In QF plot, total shaded area denotes the Q- functional value.
In this case, the error has less �uctuation as shown in �gure 5.

Figure 5: Black color star graph de-
note the average of the functions us-
ing Data 1.

Figure 6: QF plot using for Data 1.

3. Regular perturb function with Monotonic mesh
From the given three error analysis graph(�gure 1, �gure 4 and �gure
7), we can observe that the mesh with equal length has a less relative
error. On compared to mesh with unequal size, monotonic mesh has a
more relative error. The error is due to randomness, but the errors can
be controlled by the characteristic function in the de�nition of u(x).
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Figure 7: Represents the relative error of di�erent sample size with monotonic
mesh.

Therefore, mesh with equal length has a less relative error. The fol-
lowing error graph 10, has more �uctuation as compared to previous
graphs(�gure 5).

Figure 8: Black color ∗ graph denote
the average graph using interpolation
for Data 1.

Figure 9: QF plot using for Data 1

Figure 10: Represent the relative error of di�erent sample size with monotonic
mesh
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In the next paragraph, we discuss the Q-functional for singular perturb func-
tion.

4.2. Q-functional for Singular perturb function
For construction of the table 3, we consider the sequence un(x) from singular
perturbed function u(x), choose a sequence ϵn = 1

n2 > 0, n = 1, 2, ... with∑∞
i=1 ϵi =

1
n2 < ∞ such that for x ∈ [0, 2],

c = 0.01 > 0, x± ϵn ∈ [0, 2] ⊂ R and u(x− ϵn) ↛ u(x) as ϵntends to 0.

u2m+1(x) =

{
u(x− ϵn + 0.01) if x− ϵn + 0.01 ∈ [0, 2]
u(x) if x− ϵn + 0.01 /∈ [0, 2]

, (10)

u2m(x) =

{
u(x+ ϵn + 0.01) if x+ ϵn + 0.01 ∈ [0, 2]
u(x) if x+ ϵn + 0.01 /∈ [0, 2]

, (11)

where, m = 1, 2, 3, · · · , n. Using this sequence of the function, we calculate u
and compute the Q-functional values from equation (9).

Sl.No. u(x) H(x, y) Sample size MQF Relative error Exact solution of QF

100 0.8886 0.06154

1 (x− 1)2 xy4 1000 0.8309 0.007393 0.837089

10000 0.8373 0.0025

100 8.5307 0.003599

2 (x− 1)2 x+ y 1000 8.5142 0.001668 8.5

10000 8.5125 0.001468

100 1266.9 0.023576

3 x+ 1 x+ y7 1000 1224.7 0.01007 1237.032

10000 1220.3 0.01371

100 24981 0.029735

4 x+ 1 y10 1000 23726 0.02187 24244.99

10000 23601 0.02729

100 185.5748 0.017306

6 x+ 1 y5 1000 181.0008 0.00753 182.3633

10000 181.8982 0.00256

Table 3: Q- functional value with uniform mesh at N = 10000, a = 0, b =
2, c = 1, and d = 4.

Table 4.2 represents the Q- functional table corresponding to the singular
perturbed function of u. The boundary points of u have been included in
all the cases. This Table 3 shows more error compared to the Q- functional
corresponding to regular perturb function (see Table 2). On comparing Table
1 and Table 2, the Table 3 shows more error. It is evident from Table 3, as
we increase number of points, the error does not strictly decreases( refer data
3 and 4 in Table 3). If the caratheodory function H(x, y) is linear in y, then
Q- functional in singular perturbation has less error.

4.2.1. Comparison of the Q- functional values in di�erent types
of mesh with Singularly perturb function.
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In this subsection, we discuss the a�ects of di�erent types of mesh on the Q-
functional value. We consider the function u(x) = (x− 1)2 & H(x, y) = xy4

and exact value of QF is 0.837089. The total area of the shaded region denotes
the Q functional value.

We compare the average graph of singular perturb and regular perturb
function. The singular perturb function has more relative error as well as
more scattering from u.

1. Singular perturb function with equal mesh
On compared to other tables of the singular perturbation case, the uni-
form mesh has a less relative error. As the sample size increases the
relative error decreases at di�erent mesh cases Also, the convergence of
the error graph to zero is not uniform in all the cases. If the sample size
is more than 10000, it will converge slowly to zero in all the three cases.

Figure 11: Black color ∗ graph denote
the average of the sequence of func-
tions for Data 1 from table 3 using
sample size 100 points

Figure 12: QF plot using for Data 1
in table 6 using 100 points

Figure 13: represent the relative error of di�erent sample size with uniform
mesh

In the Figure 5, we represent Q- functional value with uniform mesh
and error graph 13 shows less �uctuation.
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2. Singular perturb function with unequal mesh
In �gure 16, due to the randomness of variable x, error analysis graph
exhibits more �uctuations. As the increase the sample size, it restricts
the probability of choosing the points xi. As compared to monotonic
mesh, it converges fastly, provided that the remains sample size above
10000.

Figure 14: Black color ∗ graph denote
the average of the function of Data 1
from table 6 using 100 points

Figure 15: QF plot using for Data 1
in Table 3 using 100 points

Figure 16: Above �gure represent the relative error of di�erent sample size
with unequal non monotonic mesh

3. Singular perturb function with Monotonic mesh
Let u(x) = (x − 1)2, x ∈ [0, 2]. Q-functional value of Singular perturb
function and regular perturb function with monotonic mesh case indeed
the following result. It is clear that Singular perturb function and reg-
ular perturb function Q-functional value have more relative error and
more �uctuations. It is due to the randomness of xi ∈ [0, 2], where i =
1, 2, 3...n.
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Figure 17: Black color ∗ graph de-
notes the average of the sequence of a
function using interpolation for Data
1 from table 6 using 100 points

Figure 18: QF plot using for Data 1
in table 3 using 100 points

From the available tables and following �gure 19, we can conclude that
the value of Q- functional in singular and regular case with monotonic
mesh size have more error.

Figure 19: Representation of the relative error of di�erent sample size with
monotonic mesh.

5. Summary and conclusions.
A notion of average for underlying sequences to de�ne the Q-measure is given
and also applied in atmosphere science. The Q-measure is used to de�ne Q-
functional and an algorithm is given to compute it. In general, it is di�cult
to �nd out the value of Q-functional value analytically. Both analytical and
computed results are show that relative error in Q-functional values is less
as compared to Young functional. The best convergence of Q-functional is
obtained in the case of uniform intervals. We can use modi�ed Mont Carlo
simulation it will help to reduced error compared to the simple Monte-Carlo
method.

This study has future research directions in the calculus of variations or
in the static problems in mechanics.
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Appendices

A. Young functional
Grzybowski and Puchala (2017, 2018) de�ned a function u : [a, b) → K ⊂ R,
where [a, b) is non degenerate interval in R with values in a compact set
K. Let ue indicate the periodic extension of u to the entire real line with
the period T = b − a. De�ne, a sequence (uk) by uk(x) = ue(kx). The se-
quence (uk) will be a rapidly oscillated sequence with uniform representation
u, and denoted as ROSU(u). The domain K of the function uk need not
be equivalent to [a, b) where [a, b) is the domain K of the function u. In any
neighborhood of x ∈ K the behavior of uk as k tends to in�nity, is exactly the
same. This means that the classical Young measure generated by uk is homo-
geneous. Recall from probability theory, that random variable U correspond
to the function u is uniformly distributed on the interval [a, b), provided its
probability distribution has a density which equals 1

(b−a) .

We recall the following theorem as given in Grzybowski and Puchaªa (2018):

Theorem A.1 [3] Let Young measure ν ′ of the Borel measurable function
f : Ω ⊂ Rd → K ⊂ Rl. Then ν ′ is the probability distribution corresponding
to the random variable Y = f(U), where U has a uniform distribution on K.

Definition A.2 (Classical Young measure generated by the sequence)

Let the family probability measures ν = (νx)x ∈ K is a classical Young mea-
sure1 generated by the sequence of oscillated Borel functions (uk) if for any
Caratheodory function H : Ω× R3 → R ∪ {∞} following holds.∫

Ω
H(x, uk(x))dx →

∫
Ω

∫
K
H(x, y)dνx(y)dx, as k → ∞. (12)

Example A.3 Let u(x) = (x − 1)2, x ∈ [0, 2] and Caratheodory function
H(x, y) = xy4, y ∈ [0, 4] exact value of Young functional and Q- functional
are same because by construction of u strongly converge to u in the case of
regular perturbation.

Y F (H) =

∫
Ω

∫
K
H(x, y)dν(y)dx, (13)

=

∫ 2

0

∫ 4

1
xy4g(y) dy dx, (14)

=

∫ 2

0

∫ 4

1
xy4

1

2
√
y
dy dx, where g(y) is the density function.(15)

= 0.83333. (16)
1The term classical use to represent generalized Q-measure.
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The following algorithm has been described in [6] for computing Young func-
tional value.

Algorithm 1 Compute YF value

1: procedure YF value(u)
2: Set k = 1
3: input u(x), H(x, y)
4: for each integer t do
5: t = Random((a, b))
6: y = f(t)
7: z[k] = INT (H(x, y), x, c, d)
8: end for
9: z = (z[1], z[2], ..., z[n])

10: YF=mean(sample)
11: Return Y F
12: end procedure

1

Figure 20: Algorithm for Young functional

Supplementary Materials: All data used in our experiments have been produced with
MATLAB random number generators and no external data sets have been used. The data
sets generated and analyzed during the current study are available from the corresponding
author on reasonable request.

Con�icts of Interest: Con�icts of Interest The authors declare that they have no con�ct
of interest.
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Abstract Miara Q wyznacza sªab¡∗ granic¦ barycentrum ci¡gu funkcji borelows-

kich. W tym artykule przyjrzymy si¦ tylko funkcjonaªom Q. Q-funkcjonalno±¢ jest

de�niowana przez miar¦ Q i jest przydatna w zastosowaniu do zada« optymalizacji.

Przedstawiono wyniki oblicze« dla funkcjonaªu Q i porównano je z funkcjonaªem

Younga. Otrzymane wyniki analityczne pokazuj¡, »e bª¡d wzgl¦dny w funkcjonale

Q jest mniejszy w porównaniu z funkcjonaªem Younga.
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