Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The thesis of this paper is that a good basis for defining Poisson processes on a general state space is to assume that the mean measure satisfies a simple bisection property, that every set of finite measure can be divided into two disjoint subsets of equal measure. This assumption is weaker than those usually made, and leads to simple and concrete proofs of the basic results. As an illustration, a very general version of Rényi’s characterisation theorem is proved. The paper also gives a straightforward account of the Poisson-Dirichlet distribution.
Czasopismo
Rocznik
Tom
Strony
77--95
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge CB3 0EH, UK
Bibliografia
- [1] R. Arratia, A. D. Barbour and S. Таvaré, Logarithmic Combinational Structures: a Probabilistic Approach, European Mathematical Society, Zurich 2003.
- [2] P. Billingsley, Оn the distribution of large prime divisors, Period. Math. Hungar. 2 (1972), pp. 283-289.
- [3] D. Blackwell, Discreteness of Ferguson selections, Ann. Statist, 1 (1973), pp. 356-358.
- [4] P. R. Halmos, Measure Theory, van Nostrand, Princeton 1950.
- [5] E. F. Harding and D. G. Kendall (Eds.), Stochastic Geometry, Wiley, New York 1974.
- [6] J. F. C. Kingman, Poisson Processes, Oxford 1993.
- [7] J. F. C. Kingman, The Poisson-Dirichlet distribution and the frequency of large prime divisors (2004, http://www.newton.cam.ac.uk/preprints/NI04019.pdf).
- [8] P. A. P. Moran, A non-Markovian quasi-Poisson process, Studia Sci. Math. Hungar. 2 (1967), pp. 425-429.
- [9] A. Rényi, Remarks on the Poisson process, Studia Sci. Math. Hungar. 2 (1967), pp. 119-123.
- [10] G. A. Watterson, The sampling theory of selectively neutral alleles, Adv. in Appl. Probab. 6 (1974), pp. 463-488.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66de0dee-771a-4cf4-bc02-57f689661a36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.