PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The structure and properties of aluminium alloys matrix composite materials with reinforcement made of titanium skeletons

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the article is to present the technology of the manufacturing of composite materials with aluminum alloys matrix with reinforcement made of titanium skeletons. This paper presents the structure and properties of these composite materials. Design/methodology/approach: Titanium skeletons manufactured by SLS technology for certain mechanical properties and geometrical features, subjected to infiltration of cast aluminium alloys: AlSi12, AlSi7Mg0.3 thereby obtain a composite materials AlSi12/Ti and AlSi7Mg0.3/Ti. Findings: The results of examinations of mechanical properties of aluminium alloys: AlSi12, AlSi7Mg0.3, titanium skeletons and composite materials AlSi12/Ti, AlSi7Mg0.3/Ti, show that the reinforcement of aluminium alloys AlSi12, AlSi7Mg0.3 with porous titanium skeletons has a beneficial effect on the mechanical properties of the composite materials AlSi12/Ti, AlSi7Mg0.3/Ti. Practical implications: The principal aim of modern composite materials with a reinforcement in the form of a porous metallic skeleton they are employed, among others, in the automotive, aviation, machine and space industry as well as in medicine. Originality/value: The use of SLS technology in combination with infiltration technology creates prospects production of composite materials having improved properties and a wide range of applicability.
Rocznik
Strony
16--30
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Processes Automation and Integrated Manufacturing Systems, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  • Institute of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, M. Szindler, T.G. Gaweá, Porous selective laser melted Ti and Ti6Al4V materials for medical applications, in: L.A. Dobrzański (ed.), Powder Metallurgy, InTech, Rijeka, Croatia, 2017 (in print).
  • [2] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, E. Hajduczek, G. Matula, Fabrication technologies of the sintered materials including materials for medical and dental application, in: L.A. Dobrzański (ed.), Powder Metallurgy, InTech, Rijeka, Croatia, 2017 (in print).
  • [3] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweá, L.B. Dobrzański, A. Achtelik-Franczak, The novel composite consisting of a metallic scaffold, manufactured using a computer aided laser method, coated with thin polymeric surface layer for medical applications, Patent Application No. P 411689, 23.03.2015
  • [4] L.A. Dobrzański, Applications of newly developed nanostructural and microporous materials in biomedical, tissue and mechanical engineering, Archives of Materials Science and Engineering 76/2 (2015) 53-114.
  • [5] L.A. Dobrzański et al., Investigations of structure and properties of newly created porous biomimetic materials fabricated by selective laser sintering, BIOLASIN, Project UMO-2013/08/M/ST8/00818 Gliwice, 2013-2016.
  • [6] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (eds.), Microporous metallic materials for medical application, Open Access Library 7/1 (2017) (in print, in Polish).
  • [7] L.A. Dobrzański, G. Matula, A.D. Dobrzańska-Danikiewicz, P. Malara, M. Kremzer, B. Tomiczek, M. Kujawa, E. Hajduczek, A. Achtelik-Franczak, L.B. Dobrzański, J. Krzysteczko, Composite materials infiltrated by aluminium alloys based on porous skeletons from alumina, mullite and titanium produced by powder metallurgy techniques, in: L.A. Dobrzański (ed.), Powder Metallurgy, InTech, Rijeka, Croatia, 2017 (in print).
  • [8] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, A. Achtelik-Franczak, L.B. Dobrzański, M. Kremzer, A method production of composite materials of the microporous skeleton structure of the reinforcement, Patent Application P 417552, 13.06.2016 (in Polish).
  • [9] L.A. Dobrzański, A. Achtelik-Franczak, M. Król, Computer Aided Design in Selective Laser Sintering (SLS) - application in medicine, Journal of Achievements in Materials and Manufacturing Engineering 60/2 (2013) 66-75.
  • [10] L.S. Bertol, W.K. Júnior, F.P. da Silva, C.A. Kopp, Medical design: Direct metal laser sintering of Ti-6Al- 4V, Materials and Design 31 (2010) 3982-3988, doi: 10.1016/j.matdes.2010.02.050.
  • [11] F. Abe, K. Osakada, M. Shiomi, K. Uematsu, M. Matsumoto, The manufacturing of hard tools from metallic powders by selective laser melting, Journal of Materials Processing Technology 111/1-3 (2001) 210- 213, doi: 10.1016/S0924-0136(01)00522-2.
  • [12] N. Guo, M.C. Leu, Additive manufacturing: technology, applications and research needs, Frontiers of Mechanical Engineering 8/3 (2013) 215-243, doi: 10.1007/s11465-013-0248-8.
  • [13] J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwers, Selective laser melting of iron-based powder jet, Journal of Materials Processing Technology 149/1-3 (2004) 616-622, doi: 10.1016/j.jmatprotec.2003.11.051.
  • [14] S. Kumar, Selective Laser Sintering: A Qualitative and Objective Approach, Modeling and Characterization 55/10 (2003) 43-47, doi: 10.1007/s11837-003-0175-y.
  • [15] B. Lethaus, L. Poort, R. Böckmann, R. Smeets, R. Tolba, P. Kessler, Additive manufacturing for micro- vascular reconstruction of the mandiblein 20 patients, Journal of Cranio-Maxillo-Facial Surgery 40 (2012) 43-46, doi: 10.1016/j.jcms.2011.01.007.
  • [16] D.K. Pattanayak, A. Fukuda, T. Matsushita, M. Takemoto, S. Fujibayashi, K. Sasaki, N. Nishida, T. Nakamura, T. Kokubo, Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments, Acta Biomaterialia 7 (2011) 1398-1406, doi: 10.1016/j.actbio. 2010.09.034.
  • [17] J.P. Kruth, P. Mercelis, J.V. Vaerenbergh, L. Froyen, M. Rombouts, Binding mechanisms in selective laser sintering and selective laser melting, Rapid Prototyping Journal 11/1 (2005) 26-36, doi: 10.1108/ 13552540510573365.
  • [18] Y.S. Liao, H.C. Li, Y.Y. Chiu, Study of laminated object manufacturing with separately applied heating and pressing, International Journal of Advanced Manufacturing Technology 27/7-8 (2006) 703-707, doi: 10.1007/s00170-004-2201-9.
  • [19] K. Osakada, M. Shiomi, Flexible manufacturing of metallic products by selective laser melting of powder, International Journal of Machine Tools & Manufacture (2006) 1188-1193, doi: 10.1016/j.ijmachtools. 2006.01.024.
  • [20] W. Xue, K.B. Vamsi, A. Bandyopadhyay, S. Bose, Processing and biocompatibility evaluation of laser processed porous titanium, Acta Biomateralia 3 (2007) 1007-1018, doi: 10.1016/j.actbio.2007.05.009.
  • [21] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, A. Achtelik-Franczak, Selective Laser Sintering and Melting of Pristine Titanium and Titanium Ti6Al4V Alloy Powders and of Chemical Environment for Etching of Such Materials, Archives of Metallurgy and Materials 60/3 (2015) 2039-2045, doi: 10.1515/ amm-2015-0346.
  • [22] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, L.B. Dobrzański, Comparative analysis of mechanical properties of scaffolds sintered from Ti and Ti6Al4V powders, Journal of Achievements in Materials and Manufacturing 73/2 (2015) 69-81.
  • [23] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T.G. Gaweá, L.B. Dobrzański, A. Achtelik-Franczak, Fabrication of scaffolds from Ti6Al4V powders using the computer aided laser method, Archives of Metallurgy and Materials 60/2 (2015) 1065-1070, doi: 10.1515/ amm-2015-0260.
  • [24] L.A. Dobrzański, Fundamentals of Materials Science, Silesian University of Technology, Gliwice, 2012.
  • [25] L.A. Dobrzański, M. Kremzer, M. Adamiak, The influence of reinforcement shape on wear behaviour of aluminium matrix composite materials, Journal of Achievements in Materials and Manufacturing Engineering, 42 (1-2) (2010) 26-32.
  • [26] L.A Dobrzański, M. Kremzer, M. Drak, Modern composite materials manufactured by pressure infiltration method, Journal of Achievements in Materials and Manufacturing Engineering 30/2 (2008) 121-128.
  • [27] L.A. Dobrzański, M. Kremzer, M. Dziekońska, Possibility of wettability improvement of Al2O3 preforms infiltrated by liquid aluminium alloy by deposition Ni-P coating, Archives Materials Science and Engineering 55/1 (2012) 14-21.
  • [28] L.A. Dobrzański, M. Kremzer, A. Nagel, Aluminium EN AC-AlSi12 alloy matrix composite materials reinforced by Al2O3 porous performs, Archives of Materials Science and Engineering 28/10 (2007) 593-596.
  • [29] L.A. Dobrzański, M. Kremzer, A. Nagel, Application of pressure infiltration to the manufacturing of aluminium matrix composite materials with different reinforcement shape, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 183-186.
  • [30] L.A. Dobrzański, M. Kremzer, A.J. Nowak, A. Nagel, Aluminium matrix composites fabricated by infiltration method, Archives Materials Science and Engineering 36/1 (2009) 5-11.
  • [31] L.A. Dobrzański, M. Kremzer, J. Trzaska, A. Włodarczyk-Fligier, Neural network application in simulations of composites Al-Al2O3 tribological properties, Archives of Material Science and Engineering 30/1 (2008) 37-40.
  • [32] G. Matula, J. Krzysteczko, Porous material produced by ceramic injection molding, Journal of Achievements in Materials and Manufacturing Engineering 71/1 (2015) 14-21.
  • [33] A. Włodarczyk-Fligier, L.A. Dobrzański, M. Kremzer, M. Adamiak, Manufacturing of aluminium matrix composite materials reinforced by Al2O3 particles, Journal of Achievements in Materials and Manufacturing Engineering 27/1 (2008) 99-102.
  • [34] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, A. Achtelik-Franczak, M. Szindler, Structure and properties of the skeleton microporous materials with coatings inside the pores for medical and dental applications, FiMPART Proceedings, Springer, 2017 (in print).
  • [35] A. Contreras, V.H. Lopez, E. Bedolla, Mg/TiC composites manufactured by pressureless melt infiltration, Scripta Materialia 51/3 (2004) 249-253, doi: 10.1016/ j.scriptamat.2004.04.007.
  • [36] G.W. Han, D. Feng, M. Yin, W.J. Ye, Ceramic/ aluminum co-continuous composite synthesized by reaction accelerated melt infiltration, Materials Science and Engineering A 225/1-2 (1997) 204-207, doi: 10.1016/S0921-5093(96)10573-6.
  • [37] V.M. Kevorkijan, The reactive infiltration of porous ceramic media by a molten aluminum alloy, Composites Science and Technology 59/5 (1999) 683-686, doi: 10.1016/S0266-3538(98)00116-x.
  • [38] W.S. Sheng, S.J. Lin, Ni-coated SiCp reinforced aluminum composites processed by vacuum infiltration, Materials Research Bulletin 31/12 (1996) 1437- 1447, doi: 10.1016/s0025-5408(96)00150-x.
  • [39] G. Yang, W. Song, J. Lu, Y. Hao, Y. Li, Y. Ma, Microstructure of surface composite Al2O3/Ni on copper substrate produced by vacuum infiltration casting, Materials Science and Engineering A 418/1 (2006) 223-228, doi: 10.1016/j.msea.2005.11.029.
  • [40] A.D. Dobrzańska-Danikiewicz, Computer integrated development prediction methodology in materials surface engineering, Open Access Library 1/7 (2012) 1-289 (in Polish).
  • [41] A.D. Dobrzańska-Danikiewicz, Foresight of material surface engineering as a tool building a knowledge based economy, Materials Science Forum 706-709 (2012) 2511-2516, doi: 10.4028/www.scientific.net/ MSF.706-709.2511.
  • [42] A.D. Dobrzańska-Danikiewicz, The Book of Critical Technologies of Surface and Properties Formation of Engineering Materials, Open Access Library 8/23 (2013) 1-823 (in Polish).
  • [43] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz: Foresight of the Surface Technology in Manufacturing, in: A.Y.C. Nee (ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2587-2637.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66dc123a-ff27-4a98-94c4-73a4cb2bedf7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.