PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of polymer materials and internal density on the parameters of fused filament fabrication samples during tensile testing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents a strength analysis of selected polymer materials (ABS (acrylonitrile butadiene styrene), PLA (polylactic acid), HABS (hard acrylonitrile butadiene styrene), HIPS (high-impact polystyrene), PC/ABS (acrylonitrile butadiene styrene with polycarbonate), and S&S (strong and soft)) used in the FFF method based on a static tensile test. Standardized type 1A specimens with varying filling densities of the internal grid structure were tested, specifically at densities of 13%, 15%, 20%, 65%, 80%, and fully filled. Additionally, the fractures of the samples following the strength tests were examined and described.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszów University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Budzik G., Woźniak J., Przeszłowski Ł. Druk 3D jako element przemysłu przyszłości. Analiza rynku i tendencje rozwoju (in Polish). 1st ed. Rzeszów: Oficyna Wydawnicza Politechniki Rzeszowskiej; 2022.
  • 2. Bulanda K., Oleksy M., Oliwa R., Budzik, G., Przeszłowski Ł., Fal J., Jesionowski T. Polymer composites based on polycarbonate (pc) applied to additive manufacturing using melted and extruded manufacturing (MEM) technology. Polymer 2021; 13. https://doi.org/10.3390/polym13152455.
  • 3. Jandal A., Chaturvedi I., Wazir I., Raina A., Haq M.I.U. 3D printing - A review of processes, materials and applications in industry 4.0. Sustainable Operations and Computers 2022; 3: 33–42. https://doi.org/10.1016/j.susoc.2021.09.004.
  • 4. Khan I. and Kumar N. Fused deposition modeling process parameters influence on the mechanical properties of ASB: A review. Materials Today: Proceedings 2021; 44: 4004–4008. https://doi.org/10.1016/j.matpr.2020.10.202.
  • 5. Peng F., Vogt B.D., Cakmak M. Complex flow and temperature history during melt extrusion in material extrusion additive manufacturing. Additive Manufacturing 2018; 22: 197–206. https://doi.org/10.1016/j.addma.2018.05.015.
  • 6. Kaygusuz B. and Özerinç S. Improving the ductility of polyactic acid parts produced by fused deposition modeling through polyhydroxyalkanoate additions. Journal of Applied Polymer Science 2019; 136(43). https://doi.org/10.1002/app.48154.
  • 7. Budzik G., Wieczorowski M., Oleksy M., Przeszłowski Ł., Paszkiewicz A., Sobolewski B., Woźniak J., Oliwa R. The Place of 3D Printing in the manufacturing and operational process based on the industry 4.0 structure. Tehnički glasnik 2022; 16(2): 252–257. https://doi.org/10.31803/tg-20220412195706.
  • 8. Rao V.D.P., Rajiv P., Geethika N. Effect of fused deposition modeling (FDM) process parameters on tensile strength of carbon fibre PLA. Materials Today: Proceedings 2019; 18(6); 2012–2018. https://doi.org/10.1016/j.matpr.2019.06.009.
  • 9. Duarte F.M., Covas J.A., da Costa, S.F. Predicting the effect of build orientation and process temperatures on the performance of parts made by fused filament fabrication. Rapid Prototyping Journal 2022; 28(4): 704–715. https://doi.org/10.1108/RPJ-04-2021-0084.
  • 10. Mantecón R., Rufo-Martín C., Castellanos R., Diaz-Alvarez J. Experimental assessment of thermal gradients and layout effects on the mechanical performance of components manufactured by fused deposition modeling. Rapid Prototyping Journal 2022; 28(8); 1598–1608. https://doi.org/10.1108/RPJ-12-2021-0329.
  • 11. Dębski M., Magniszewski M., Bernaczek J., Przeszłowski Ł., Gontarz M., Kiełbicki M. Influence of torsion on the structure of machine elements made of polymeric materials by 3D printing. Polimery 2021; 66(5): 298–303. https://doi.org/10.14314/polimery.2021.5.3.
  • 12. Singh P.K., Mausam K., Islam A. Achieving better results for increasing strength and life time of gears in industries using various composite materials. Materials Today: Proceedings 2021; 45; 3068–3074. https://doi.org/10.1016/j.matpr.2020.12.062.
  • 13. Atakok G., Kam M., Koc H.B. Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation. Journal of Materials Research and Technology 2022; 18: 1542–1554. https://doi.org/10.1016/j.jmrt.2022.03.013.
  • 14. Fontana L., Minetola P., Iuliano L., Rifuggiato S., Khandpur M.S., Stiuso V. An investigation of the influence of 3d printing parameters on the tesile strength of PLA material. Materials Today: Proceedings 2022; 57(2): 657–663. https://doi.org/10.1016/j.matpr.2022.02.078.
  • 15. Chacón J.M., Caminero M.A., García-Plaza E., Núñez P.J. Additive manufacturing of PLA structures using fused deposition modeling: Effect of process parameters on mechanical properties and their optimal selection. Materials & Design 2017; 124: 143–157. http://dx.doi.org/10.1016/j.matdes.2017.03.065.
  • 16. Zhao Y., Chen Y., Zhou Y. Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: Experimental and theoretical analyses. Materials & Design 2019; 181. https://doi.org/10.1016/j.matdes.2019.108089.
  • 17. Yao T., Zhang K., Deng Z., Ye J. A novel generalized stress invariant-based strength model for inter-layer failure of FFF 3D printing PLA material. Materials & Design 2020; 193. https://doi.org/10.1016/j.matdes.2020.108799.
  • 18. Doshi M., Mahale A., Singh S.K., Deshmukh S. Printing parameters and materials affecting mechanical properties FDM-3D printed Parts: perspective and prospects. Materials Today: Proceedings 2022; 50(5): 2269–2275. https://doi.org/10.1016/j.matpr.2021.10.003.
  • 19. Ali M.H., Issayev G., Shehab E., Sarfraz S. A critical review of 3D printing and digital manufacturing in construction engineering. Rapid Prototyping Journal 2022; 28(7): 1312–1324. https://doi.org/10.1108/RPJ-07-2021-0160.
  • 20. Lovo J.F.P., Gerlin Neto V., Piedade L.P., Massa R.C., Pintão C.A., Foschini C.R., Fortulan C.A. Mechanical properties assessment of a 3D printed composite under torsional and perpendicular stress. Rapid Prototyping Journal 2023; 29(1): 1–8. https://doi.org/10.1108/RPJ-03-2022-0067.
  • 21. Dev S. and Srivastava R. Experimental investigation and optimization of FDM process parameters for material and mechanical strength. Materials Today: Proceeding 2020; 26(2): 1995–1999. https://doi.org/10.1016/j.matpr.2020.02.435.
  • 22. Pernet B., Nagel J.K., Zhang H. Compressive Strength Assessment of 3D Printing Infill Patterns. Procedia CIRP 2022; 105: 682–687. https://doi.org/10.1016/j.procir.2022.02.114.
  • 23. Nace S.E., Tiernan J., Holland D., Ni Annaidh A. A comparative analysis of the compression characteristic of a thermoplastic polyurethane 3D printed in four infill patterns for comfort applications. Rapid Prototyping Journal 2021; 27(11): 24–36. https://doi.org/10.1108/RPJ-07-2020-0155.
  • 24. Bhosale V., Gaikwad P., Dhere S., Sutar C., Raykar S.J. Analysis of process parameters of 3D printing for surface finish, printing time and tensile strength. Materials Today: Proceedings 2022; 59(1): 841–846. https://doi.org/10.1016/j.matpr.2022.01.210.
  • 25. Ambati S.S. and Ambatipudi R. Effect of infill density and infill pattern on the mechanical properties of 3D printed PLA parts. Materials Today: Proceedings 2022; 64(1): 804–807. https://doi.org/10.1016/j.matpr.2022.05.312.
  • 26. PN-EN ISO 527-2:2012: Plastics – Determination of tensile properties – Part 2: Test conditions for moulding and extrusion plastics, (Accessed: 28.08.2024). https://sklep.pkn.pl/.
  • 27. PN-EN ISO 527-1:2020: Plastics – Determination of tensile properties – Part 1: General principles, (Accessed: 28.08.2024). https://sklep.pkn.pl/.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66da324a-22dd-40bb-940c-d980d5e4e3b9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.