Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, the electronic structure and optical behavior and the thermoelectric performance of the known HfNiSn compound have been studied under the substitution of Mn transition metal instead of Ni atoms. Necessary calculations are performed in the framework of DFT first principles studies by applying generalized gradient approximation (PBE-GGA) as well as solving Boltzmann’s semi-classical equations. The entering Mn leads to a change in the electronic structure of HfNiSn and the occurrence of half-metallic ferromagnetic behavior with 100% polarization at the Fermi level. The maximum ZT value obtained for HfMnSn shows that HfNiSn would be suitable for thermoelectric applications at room temperature, both in pure and Mn presence. The examination of optical parameters also indicates good absorption in the visible range for this compound in all cases.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
851--860
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
- Department of Physics, Hamedan Branch, Islamic Azad University, Hamedan, Iran
autor
- Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
- Department of Physics, Hamedan Branch, Islamic Azad University, Hamedan, Iran
Bibliografia
- [1] S. Populoh, M.H. Aguirre, O.C. Brunko, K. Galazka, Y. Lu, A. Weidenkaff, Scr. Mater. 66 (12), 1073 (2012). DOI: https://doi.org/10.1016/j.scriptamat.2012.03.002
- [2] S. Chen, K.C. Lukas, W. Liu, C.P. Opeil, C.P. Chen, Z. Ren, Adv. Energy Mater. 3 (9), 1210 (2013). DOI: https://doi.org/10.1002/aenm.201300336
- [3] J. Krez, J. Schmitt, G.J. Snyder, C. Felser, W. Hermes, M. Schwind, J. Mater. Chem. A, 2 (33), 13513 (2014). DOI: https://doi.org/10.1039/C4TA03000A
- [4] T. Jaeger, C. Mix, M. Schwall, X. Kozina, J. Barth, B. Balke, G. Jakob, Thin Solid Films, 520 (3), 1010 (2011). DOI: https://doi.org/10.1016/j.tsf.2011.08.008
- [5] Y. Kimura, H. Ueno, Y. Mishima, J. Electron. Mater. 38 (7), 934 (2009). DOI: https://doi.org/10.1007/s11664-009-0710-x
- [6] C. Yu, T.J. Zhu, R.Z. Shi, Y. Zhang, X.B. Zhao, J. He, Acta Mater. 57 (9), 2757 (2009). DOI: https://doi.org/10.1016/j.actamat.2009.02.026
- [7] Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, C. Uher, Appl. Phys. Lett. 79, 4165 (2001). DOI: https://doi.org/10.1063/1.1425459
- [8] S. Ouardi, G.H. Fecher, C. Felser, C.G. Blum, D. Bombor, C. Hess, E. Ikenaga, Appl. Phys. Lett. 99 (15), 152112 (2011). DOI: https://doi.org/10.1063/1.3651484
- [9] D.P. Rai, A. Shankar, A.P. Sakhya, T.P. Sinha, R. Khenata, M.P. Ghimire, R.K. Thapa, 3, 075022 (2016). DOI: https://doi.org/10.1088/2053-1591/3/7/075022
- [10] D.P. Rai, A. Shankar, Sandeep, M.P. Ghimire, R. Khenata, R.K. Thapa, RSCAdv. 6, 13358 (2016). DOI: https://doi.org/10.1039/C6RA90008A
- [11] K. Ahilan, M.C. Bennett, M.C. Aronson, N.E. Anderson, P.C. Canfield, E. Munoz-Sandoval, J.A., PRB, 69 (24), 245116 (2004). DOI: https://doi.org/10.1103/PhysRevB.69.245116
- [12] D.F. Zou, S.H. Xie, Y.Y. Liu, J.G. Lin, J.Y. Li, J. Appl. Phys. 113 (19), 193705 (2013). DOI: https://doi.org/10.1063/1.4804939
- [13] H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wölfing, E. Bucher, Journal of Physics: Condensed Matter. 11 (7), 1697 (1999).
- [14] N. Shutoh, S. Sakurada, J. Alloys Compd. 389 (1-2), 204 (2005). DOI: https://doi.org/10.1016/j.jallcom.2004.05.078
- [15] C. Uher, J. Yang, S. Hu, D.T. Morelli, G.P. Meisner, PRB, 59 (13), 8615 (1999). DOI: https://doi.org/10.1103/PhysRevB.59.8615
- [16] B. Arghavani Nia, M. Shahrokhi, R. Moradian, I. Manouchehri, The European Physical Journal - Applied Physics 67 (2) 20403 (2014). DOI: https://doi.org/10.1051/epjap/2014130513
- [17] M. Shahrokhi, C. Leonard, Journal of Alloys and Compounds 693, 1185 (2017). DOI: https://doi.org/10.1016/j.jallcom.2016.10.101
- [18] B. ArghavaniNia, M. Shahrokhi, Chinese Journal of Physics 56 (6), 3039 (2018). DOI: https://doi.org/10.1016/j.cjph.2018.10.013
- [19] M. Shahrokhi, P. Raybaud, T.L. Bahers, J. Mater. Chem. C, 8, 9064 (2020). DOI: https://doi.org/10.1039/D0TC02066D
- [20] M. Shahrokhi, ACS Omega 5 (2), 1270 (2020). DOI: https://doi.org/10.1021/acsomega.9b03845
- [21] K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002). DOI: https://doi.org/10.1016/S0010-4655(02)00206-0
- [22] E. Sjöstedt, L. Nordström, D.J. Singh, Solid State Commun. 114, 15 (2000). DOI: https://doi.org/10.1016/S0038-1098(99)00577-3
- [23] G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B 64, 195134 (2001). DOI: https://doi.org/10.1103/PhysRevB.64.195134
- [24] J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008). DOI: https://doi.org/10.1103/PhysRevLett.100.136406
- [25] H.J. Monkhorst, J. D. Pack, PRB, 13 (12), 5188 (1976). DOI: https://doi.org/10.1103/PhysRevB.13.5188
- [26] F.G. Aliev, N.B. Brandt, V.V. Moshchalkov, V.V. Kozyrkov, R.V. Skolozdra, A.I. Belogorokhov, Zeitschrift für Physik B Condensed Matter. 75 (2), 167 (1989). DOI: https://doi.org/10.1007/BF01307996
- [27] G.K.H. Madesan, D.J. Sing, Phys. Commun. 175, 67 (2006). DOI: https://doi.org/10.1016/j.cpc.2006.03.007
- [28] F.D. Murnaghan, Proceedings of the national academy of sciences of the United States of America 30 (9), 244 (1944). DOI: https://doi.org/10.1073/pnas.30.9.244
- [29] S.H. Wang, H.M. Cheng, R.J. Wu, W.H. Chao, Thin Solid Films 518 (21), 5901 (2010). DOI: https://doi.org/10.1016/j.tsf.2010.05.080
- [30] J. Jacob, U. Rehman, K. Mahmood, A. Ali, A. Ashfaq, N. Amin, S. Ikram, M. Alzaid, K. Mehboob, Physics Letters A, 388, 127034 (2021). DOI: https://doi.org/10.1016/j.physleta.2020.127034
- [31] L. Bo, Y. Wang, W. Wang, L. Wang, F. Li, M. Zuo, Y. Ma, D. Zhao, Results in Physics 26, 104337 (2021). DOI: https://doi.org/10.1016/j.rinp.2021.104337
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66cd3ab3-aca4-489a-b4f0-961a47650925