PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Potencjał naziemnego skaningu laserowego 3D w inwentaryzacji i monitoringu tuneli kolejowych

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Potential of terrestrial laser scanning 3d for inventory and monitoring of railway tunnels
Konferencja
Nowoczesne Technologie i Systemy Zarządzania w Transporcie Szynowym = Modern Technologies and Management Systems for Rail Transport (3-5.12.2014 ; Zakopane, Polska)
Języki publikacji
PL EN
Abstrakty
PL
Systemy naziemnych skanerów laserowych 3D w ostatnich latach zyskały uznanie, jako precyzyjne i wiarygodne narzędzia stosowane w celu zapewnienia jakości geometrycznego odwzorowania obiektów inżynierskich. W artykule przedstawiono możliwości zastosowania naziemnego skaningu laserowego 3D w odniesieniu do inwentaryzacji i monitorowania tuneli kolejowych. Omówiono zalety i wady metody.
EN
The 3D terrestrial laser scanning systems have gained recently recognition as precise and reliable tool used to the confirm geometric quality of any engineering objects. The possibilities of using terrestrial laser scanning 3D while inventory and monitoring railway tunnels have been presented in the paper. The advantages and disadvantages of this method have been discussed.
Twórcy
autor
  • Politechnika Krakowska, ul. Warszawska 24, 31-155 Kraków, Zakład Współdziałania Budowli z Podłożem, tel. (12) 6283038
Bibliografia
  • [1] Abmayr T., Härtl F., Reinköster M., Fröhlich C., Terrestrial laser scanning – applications in cultural heritage conservation and civil engineering 2012, http://www.isprs.org/proceedings/XXXVI/5-W17/ International society for Photogrammetry and Remote Sensing.
  • [2] Barnhart T.B., CrosbyB.T., Comparing Two Methods of Surface Change Detection on an Evolving Thermokarst Using High-Temporal-Frequency Terrestrial Laser Scanning, Selawik River, Alaska Remote Sens. 2013, 5, pp. 2813-2837.
  • [3] Buchroithner M.F., Gaisecker D.&T., Österreich H., Modeling And Visualization Using Laser Scanner In Documentation Of Cultural Heritage Photogrammetrie • Fernerkundung • Geoinformation 4/2009, S. 329 –339.
  • [4] Cowan E.J. et., Beatson R.K., Fright W.R., McLennan T.J., Mitchell T.J., Rapid geological modeling. Applied Structural Geology for Mineral Exploration and Mining, International Symposium, Kalgoorlie, September 2002.
  • [5] Decker, J.B., Dove J.E., Laser Techniques in Devil’s Slide Tunnels. In Proceedings of the 42th US Rock Mechanics Symposium, San Francisco, CA, USA, 29 June–2 July 2008.
  • [6] Erol B., Evaluation of high-precision sensors in structural monitoring. Sensors 2010, 10, 10803–10827.
  • [7] Erol B.; Erol S.; Çelik R.N,. Monitoring and Analysing Structural Movements with Precise Inclination Sensors. In Geodetic Deformation Monitoring: From Geophysical to Engineering Roles, 131; Sansò, F., Gil, A.J., Eds.; IAG Symposium: Jaén, Spain, 7–19 March 2005.
  • [8] Fekete S., Diederichs M., Lato M., Geotechnical applications of lidar scanning in tunneling, Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, May 2009.
  • [9] Fekete S.; Diederichs M., Lato M,. Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels. Tunn. Undergr. Space Technol. 2010, 25, 614–628.
  • [10] Gikas V., Three-Dimensional Laser Scanning for Geometry Documentation and Construction Management of Highway, Sensors 2012, 12, 11249-11270.
  • [11] Gikas V.; Stratakos J., A novel geodetic engineering method for the accurate and automated extraction of road/railway alignments based on the bearing diagram and fractal behavior. IEEE Trans. Intell. Transp. Syst. 2012, 13, 115–126.
  • [12] Gordon i Lichti, Gordon S. J. and Lichti D.D., Modeling terrestrial laser scanner data for precise structural deformation measurement. Journal of Surveying Engineering, 2007, 133:72–80.
  • [13] Jones R.R., Kokkalas S., McCaffrey K.J.W., Quantitative analysis and visualization of nonplanar fault surfaces using terrestrial laser scanning (LIDAR)—The Arkitsa fault, central Greece, as a case studyGeosphere, December 2009, v. 5, p.465-482.
  • [14] Lam S.Y.W., Application of terrestrial laser scanning methodology in geometric tolerances analysis of tunnel structures. Tunn. Undergr. Space Technol. 2006, 21, 410.
  • [15] Lato M., Diederichs M.S., Hutchinson D.J., Bias correction for view-limited Lidar scanning of rock outcrops for structural characterization. Rock Mech. Rock Eng. 2010, 43, 615–628.
  • [16] Lemy, F.; Yong, S.; Schulz, T. A Case Study Monitoring Tunnel Wall Displacement Using Laser Scanning Technology. In Proceedings of IAEG, Nottingham, UK, 6–10 September 2006.
  • [17] Lenda G., Strach M., Zastosowanie skaningu laserowego do inwentaryzacji tunelu kolejowego, Przegląd Komunikacyjny, 2011, 9-10, pp. 78-83.
  • [18] Lichti D.D., Harvey, The effects of reflecting surfach material properties on time-of-flight laser scanner measurments. Symposium on Geospatial Theory, Processing and Applications, Ottawa 2002.
  • [19] Markiewicz J., Zawieska D., Kowalczyk M., Zaplata Utilisation Of Laser Scanning For Inventory Of An Architectural Object Using The Example Of Ruins Of The Krakow Bishops’ Castle In Ilza, Poland, 14th Sgem GeoConference on Informatics, Geoinformatics and Remote Sensing, www.sgem.org, SGEM2014 Conference Proceedings, ISBN 978-619-7105-12-4 / ISSN 1314-2704, June 19-25, 2014, Vol. 3, 391-396 pp.
  • [20] Markiewicz J.S., Zawieska D., Terrestrial scanning or digital images in inventory of monumental objects? - Case study, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-5, 2014 ISPRS Technical Commission V Symposium, 23 – 25 June 2014, Riva del Garda, Italy.
  • [21] Owerko T.; Strach M., Examining coherence of accuracy tests of total station surveying and geodetic instruments based on comparison of results of complete test procedures according to ISO 17123. Rep. Geod. 2009, 4, 291–299.
  • [22] Pesci A., Teza G., Effects of surface irregularities on intensity data from laser scanning an experimental approach: Annals of Geophysics, Vol. 51, N. 5/6, October/December 2008.
  • [23] Piechocka N., Marmol U., Jachimski J., Stereometryczna weryfikacja DTM uzyskanego ze skaningu laserowego. Archiwum Fotogrametrii, Kartografii i Teledetekcji, vol. 14, Białobrzegi - Warszawa 2004 http://home.agh.edu.pl/~zfiit/Badania.htm.
  • [24] Pieraccini M., Noferini L., Mecatti D., Atzeni C., Teza G., Galgaro A., and Zaltron N., Integration of radar interferometry and laser scanning for remote monitoring of an urban site built on a sliding slope. IEEE Transactions on Geoscience and Remote Sensing, 44(9).
  • [25] Pilecka E., Bazarnik M., Pawlak – Burakowska A., Wyniki monitorowania skuteczności zabezpieczenia osuwiska na przykładzie osuwiska w Sadowiu na linii kolejowej nr 8 Warszawa – Kraków. Zeszyty Naukowo-Techniczne SITK Oddz. Kraków nr 2 (910)/2013, p.237-251.
  • [26] Rönnholm P., Pöntinen P., Nuikka M., Suominen A., Hyyppä H., Kaartinen H., Absetz I., Hirsi H., and Juha Hyyppä J., Experiments on deformation measurements of Helsinki Design Week 2005 info pavillon. IAPRS XXXVI (5), Dresden 25-27 September 2006.
  • [27] Rüther H., Held Ch., Bhurtha R., Schröder R., Wessels S., Challenges in Heritage Documentation with Terrestrial Laser Scanning http://africageodownloads. info/122_ruther.pdf European Scientific Journal August 2013 edition vol.9, No.24 ISSN: 1857 – 7881 (Print) e - ISSN 1857-7431.
  • [28] Seo D., Lee J.C., Lee Y.D., Lee Y.H., Mun D.Y., Development of Cross Section Management System in Tunnel Using Terrestrial Laser Scanning Technique. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII(B5), Beijing, China, 3–11 July 2008.
  • [29] Slob S., Hack R., 3D Terrestrial Laser Scanning as a New Field Measurement and Monitoring Technique. Engineering Geology for Infrastructure Planning in Europe Lecture Notes in Earth Sciences Volume 104, 2004, pp 179-189.
  • [30] Soudarissanane S., Lindenbergh R., Gorte B., Reducing the error in terrestrial laser scanning by optimizing the measurement set-up. In Proceedings of International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, July 3–11, 2008; Vol. XXXVII (Part B5), pp. 615–620.
  • [31] Van Gosliga R., Lindenbergh R., Pfeifer N., Deformation Analysis of a Bored Tunnel by Means of Terrestrial Laser Scanning. In Proceedings of the ASPRS Archives, Dresden, Germany, 25–27 September 2006. Sensors 2012, 12 11270.
  • [32] Vezočnik R., Ambrožič T., Sterle O., Bilban G., Pfeifer N., Stopar B., Use of terrestrial laser scanning technology for long term high precision deformation monitoring. Sensors 2009, 9, 9873–9895.
  • [33] Yoon J.S., Sagong M., Lee J.S., Lee K., Feature extraction of a concrete tunnel liner from 3D laser scanning data. NDT E Int. 2009, 42, 97–105.
  • [34] Zaimovic-Uzunovic N., Lemes S., Influences of surface parameters on laser 3d scanning. 10th International Symposium on Measurement and Quality Control 2010, September 5-9.
  • [35] file:///E:/skanowanie%20tuneli/23_10/Slob117_pictures.pdf
  • [36] http://www.igipz.pan.pl/zsigik-projekty-tls-wprowadzenie.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66cbb3f0-0b45-4eb9-bd0c-4b905da40b9f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.