PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research the possibilities of different filters and their application to image recognition problems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article is devoted to the analysis from the viewpoint of accuracy allocation of contour points, and maintaining information about the distribution of non-derivative elements. In this article is researched the edge enhancement algorithms such as Prewitt, Sobel, Laplacian, Kirsch and evaluated their work, using some well-known performance measures. Also compared the efficacy of the researched algorithms, which was determined on the selected images with superimposed noise.
Słowa kluczowe
Twórcy
autor
  • Kharkiv National University of Radio Electronics
autor
  • Kharkiv National University of Radio Electronics
autor
  • Kharkiv National University of Radio Electronics
Bibliografia
  • 1. Duda R., Hart P., 1973. Pattern Classification and Scene Analysis. New York: Wiley.
  • 2. Tou T., Gonzalez R., 1974. Pattern Recognition Principles. Addison-Wesley, Reading, Mass. 97-104.
  • 3. Gonzales R., Woods R. 2007. Digital Image Processing. Prentice Hall, 976.
  • 4. Shapiro L., Stockman G., 2006. Computer Vision. Мoscow, BYNOM. 752.
  • 5. Putyatin E., Matat E., 2003. Information systems technology. Image processing and pat tern recognition. Kharkiv National University of Radio Electronics. Kharkiv. 105.
  • 6. Malik J., Belongie S., Leung T., Shi J., 2001. Contour and Texture Analysis for Image Segmentation // International Journal of Computer Vision, 43(1), 7–27.
  • 7. Liu X., Wang D., 2006. Image and Texture Segmentation Using Local Spectral Histograms // IEEE Transaction on image processing, Vol. 15, No. 10, 3066-3077.
  • 8. Semenets V., Natalukha Yu., Taranukha O., Tokarev V. 2014. About One Method of Mathematical Modelling of Human Vision Functions. ECONTECHMOD. An international quarterly journal Vol. 3, №3, 51-59.
  • 9. Brytik V.I., Zhilina O.Yu., Kobziev V.G. 2014. Structural Method of Describing The Texture Images. ECONTECHMOD. An international quarterly journal Vol. 3, №3, 89-98.
  • 10. Anokhin M., Koryttsev I., 2015. Decisionmaking rule efficiency estimation with applying similarity metrics. ECONTECHMOD. An international quarterly journal. Vol. 4, №3, 73-78.
  • 11. Vitcus R., Yaroslavskiy L., 1988. The adaptive linear filters for image processing. Мoscow, Nauka.
  • 12. Forsyth D., 2004. Computer vision: a modern approach – Мoscow, Publishing House Williams. 928.
  • 13. Kinoshenko D., Mashtalir V., Shlyakhov V., Yegorova E., 2010. Nested Partitions Properties for Spatial Content Image Retrieval // International Journal of Digital Library Systems.– Vol. 1, No 3. - 58-89.
  • 14. Venmathi A., Ganesh E., Kumaratharan N., 2016. Kirsch Compass Kernel Edge Detection Algorithm for Micro Calcification Clusters in Mammograms. Middle-East Journal of Scientific Research 24 (4). - 1530-1535.
  • 15. Brytik V., Zhilina E., 2014. Investigation possibilities of various filters which used in pattern recognition problems // Bionica Intellecta. 2(83), 88-95.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66c26d05-79d5-49c5-812a-b3c62e35f3c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.