PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of vibration control using laboratory test rig of wind turbine tower-nacelle system with MR damper based tuned vibration absorber

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wind turbine tower dynamic stress is related to the fatigue wear and reliability of the whole wind turbine structure. This paper deals with the problem of tower vibration control using a specially designed and built laboratory model. The considered wind turbine tower-nacelle model consists of a vertically arranged stiff rod (representing the tower), and a system of steel plates (representing nacelle and turbine assemblies) fixed at its top. The horizontally aligned tuned vibration absorber (TVA) with magnetorheological (MR) damper is located also at the top of the rod (in nacelle system). Force excitation sources applied horizontally to the tower itself and to the nacelle were both considered. The MR damper real-time control algorithms, including ground hook control and its modification, sliding mode control, linear and nonlinear (cubic and square root) damping, and adaptive solutions are compared to the open-loop case with various constant MR damper input current values and system without MR TVA (i.e., MR TVA in “locked” state). Comprehensive experimental analyses and their results are presented.
Rocznik
Strony
347--359
Opis fizyczny
Bibliogr. 34 poz., fot., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Department of Process Control, 30 Mickiewicza Ave., 30-059 Krakow, Poland
Bibliografia
  • [1] I. Enevoldsen and K.J. Mork, “Effects of vibration mass damper in a wind turbine tower”, Mech. Struct. & Mach. 24 (2), 155-187 (1996).
  • [2] P. Jain, Wind Energy Engineering, McGRAW-HILL (2011).
  • [3] U.A. Butt and T. Ishihara, “Seismic load evaluation of wind turbine support structures considering low structural damping and soil structure interaction”, European Wind Energy Association Annual Event, Copenhagen (2012).
  • [4] M.H. Hansen, P. Fuglsang, K. Thomsen, and T. Knudsen, “Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments”, European Wind Energy Association Annual Event, Copenhagen (2012).
  • [5] F. Matachowski and P. Martynowicz, “Analiza dynamiki konstrukcji elektrowni wiatrowej z wykorzystaniem środowiska Comsol Multiphysics”, Modelowanie Inżynierskie 13 (44), 209-216 (2012).
  • [6] C. Bak, R. Bitsche, A. Yde, T. Kim, M.H. Hansen, F. Zahle, M. Gaunaa, J. Blasques, M. Dossing, J.J. Wedel-Heinen, and T. Behrens, “Light rotor: the 10-MW reference wind turbine”, European Wind Energy Association Annual Event, Copenhagen (2012).
  • [7] W. Shan and M. Shan, “Gain scheduling pitch control design for active tower damping and 3p harmonic reduction”, European Wind Energy Association Annual Event, Copenhagen (2012).
  • [8] M. Jelavić, N. Perić, and I. Petrović, “Damping of wind turbine tower oscillations through rotor speed control”, International Conference on Ecologic Vehicles & Renewable Energies, Monaco (2007).
  • [9] H. Namik and K. Stol, “Performance analysis of individual blade pitch control of offshore wind turbines on two floating platforms”, Mechatronics 21, 691-703 (2011).
  • [10] J.P. Den Hartog, Mechanical Vibrations, Dover Publications, Mineola, NY 1985.
  • [11] S. Oh and T. Ishihara, “A study on structure parameters of an offshore wind turbine by excitation test using active mass damper”, EWEA Offshore, Frankfurt 2013.
  • [12] A. Tsouroukdissian, C.E. Carcangiu, I. Pineda Amo, M. Martin, T. Fischer, B. Kuhnle, and M. Scheu, “Wind turbine tower load reduction using passive and semiactive dampers”, European Wind Energy Association Annual Event, Brussels 2011.
  • [13] M.A. Rotea, M.A. Lackner, and R. Saheba, “Active structural control of offshore wind turbines”, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando (2010).
  • [14] W. Łatas and P. Martynowicz, “Modelowanie drgań układu maszt-gondola elektrowni wiatrowej z tłumikiem dynamicznym”, Modelowanie Inżynierskie 13 (44), 187-198 (2012).
  • [15] P.H. Kirkegaard et al., “Semiactive vibration control of a wind turbine tower using an MR damper”, Struct. Dynamics EURODYN 2002, Grundmann&Schueller, Swets&Zeitlinger, Lisse (2002).
  • [16] S. Kciuk and P. Martynowicz, “Special application magnetorheological valve numerical and experimental analysis”, Diffusion and Defect Data - Solid State Data. Pt. B, Solid State Phenomena 177 (Control engineering in materials processing), 102-115 (2011).
  • [17] Lord Rheonetic, MR Controllable Friction Damper RD-1097-01 Product Bulletin, Lord Co. 2002.
  • [18] J. Snamina and B. Sapiński, “Energy balance in self-powered MR damper-based vibration reduction system”, Bull. Pol. Ac.: Tech. 59 (1), 75-80 (2011).
  • [19] P. Martynowicz, “Development of laboratory model of wind turbine’s tower-nacelle system with magnetorheological tuned vibration absorber”, Solid State Phenomena, 208, 40-51 (2014).
  • [20] J. Snamina, P. Martynowicz, and W. Łatas, “Dynamic similarity of wind turbine’s tower-nacelle system and its scaled model”, Solid State Phenomena, 208, 29-39 (2014).
  • [21] P. Martynowicz and Z. Szydło, “Wind turbine’s tower-nacelle model with magnetorheological tuned vibration absorber: the laboratory test rig”, Proceedings of the 14th International Carpathian Control Conference, 238-242 (2013).
  • [22] TMS, 60 Lbf Modal Shaker, The Modal Shop Inc. 2010.
  • [23] M. Rosol and P. Martynowicz, “Identification of Wind Turbine Model with MR Damper Based Tuned Vibration Absorber”, Journal of Dynamic Systems, Measurement and Control (in review).
  • [24] P. Martynowicz, “Wind turbine’s tower-nacelle model with magnetorheological tuned vibration absorber--numerical and experimental analysis”, 6WCSCM:Sixth World Conference on Structural Control and Monitoring: proceedings of the 6th edition of the World conference of the International Association for Structural Control and Monitoirng (IACSM): Barcelona, Spain, ISBN: 978-84-942844-5-8 (2014).
  • [25] J. Snamina and P. Martynowicz, “Prediction of characteristics of wind turbine’s tower-nacelle system from investigation of its scaled model”, 6WCSCM:Sixth World Conference on Structural Control and Monitoring: proceedings of the 6th edition of the World conference of the International Association for Structural Control and Monitoirng (IACSM): Barcelona, Spain, ISBN: 978-84-942844-5-8 (2014).
  • [26] P. Martynowicz, “Vibration control of wind turbine tower- nacelle model with magnetorheological tuned vibration absorber locked”, Journal of Vibration and Control, DOI: 10.1177/1077546315591445 (2015).
  • [27] H. Laalej, Z.Q. Lang, B. Sapinski, and P. Martynowicz, “MR damper based implementation of nonlinear damping for a pitch plane suspension system”, Smart Mater. Struct. 21, DOI: 10.1088/0964‒1726/21/4/045006 (2012).
  • [28] C. Ho, Z. Q. Lang, B. Sapinski, and S.A. Bilings, “Vibration isolation using nonlinear damping implemented by a feedback-controlled MR damper”, Smart Mater. Struct. 22, DOI: 10.1088/0964-1726/22/10/105010 (2013).
  • [29] T. Orlowska-Kowalska and G. Tarchala, “Unified approach to the sliding-mode control and state estimation - application to the induction motor drive”, Bull. Pol. Ac.: Tech. 61 (4), 837-846 (2014).
  • [30] V.A. Neelakantan and G.N. Washington, “Vibration control of structural systems using MR dampers and a ‘modified’ sliding mode control technique”, J. Intell. Mater. Syst. Struct. 19 (2), 211-224 (2008).
  • [31] M. Rosół and P. Martynowicz, “Implementation of LQG controller for wind turbine tower-nacelle model with MR tuned vibration absorber”, Journal of the Theoretical and Applied Mechanics (accepted for publication).
  • [32] T. Ackermann, Wind Power in Power Systems, ISBN: 978-0-470-01267-3, J. Wiley, 2005.
  • [33] D. Hiriart, J.L. Ochoa, and B. Garcia, “Wind power spectrum measured at the San Pedro Martir Sierra”, Revista Mexicana de Astronomia y Astrofisica 37, 213-220 (2001).
  • [34] P. Martynowicz, “Control of an MR Tuned Vibration Absorber for Wind Turbine Application Utilising the Refined Force Tracking Algorithm”, Low Frequency Noise, Vibration, and Active Control (in review).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-66c2201c-494c-4b4e-a094-c2c71f01ba1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.